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Abstract

Di� usion in disordered systems does not follow the classical laws which
describe transport in ordered crystalline media, and this leads to many anomalous
physical properties. Since the application of percolation theory, the main advances
in the understanding of these processes have come from fractal theory. Scaling
theories and numerical simulations are important tools to describe di� usion
processes (random walks: the `ant in the labyrinth’) on percolation systems and
fractals. Di� erent types of disordered systems exhibiting anomalous di� usion are
presented (the incipient in®nite percolation cluster, di� usion-limited aggregation
clusters, lattice animals, and random combs), and scaling theories as well as
numerical simulations of greater sophistication are described. Also, di� usion in
the presence of singular distributions of transition rates is discussed and related to
anomalous di� usion on disordered structures.
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1. Introduction
The problem of di� usion in disordered media is part of the general problem of

transport in disordered media. The range of applicability and of physical interest is
enormous [1±28]. Most of the materials encountered in nature in everyday experience
are non-crystalline, disordered materials. The classic theories of transport valid for
crystals do not apply, and the physics of transport, and in particular of di� usion, is
anomalous in these disordered systems. It is impossible to present an exhaustive list
of the physical phenomena related to the subject reviewed in this article. Some
typical examples are the problems of the transport properties in fractured [2, 29] and
in porous [30] rocks, the anomalous density of states in randomly diluted magnetic
systems [31, 32], in silica aerogels [33] and in glassy ionic conductors [34], anomalous
relaxation phenomena in spin glasses [35] and in macromolecules [36], conductivity
of superionic conductors such as hollandite [37] and of percolation clusters of Pb on
thin ®lms of Ge or Au [38±40], and of di� usion-controlled fusion of excitations in
porous membrane ®lms, polymeric glasses and isotropic mixed crystals [41], to
mention a number of examples.

Much of our understanding of disordered systems comes from percolation
theory. The percolation model has proved to be relevant and useful for the study
of most disordered media. Since it is essentially a simple purely geometrical model, it
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has as much appeal to the mathematician as to the physicist. This subject is
excellently reviewed in references [16±22]. Another important advance came with
the advent of fractals [23, 24] and with the realization that fractals are a very good
model for the geometrical structure of most disordered materials, as well as for the
clusters generated by the percolation model itself. It is not our intention to review
fractal theory (a complete presentation of the subject is given in references [23±28]).
Rather, we present in section 1.1 only the de®nitions of the most basic concepts used
in this review.

Di� usion and transport properties on both percolation and fractals have been
extensively studied. The analysis of transport in disordered media by means of
di� usion on percolation clusters was suggested by de Gennes [42]. The idea was to
perform random walks on a percolation system, for which de Gennes coined the
term `ant in the labyrinth’. This can be used to measure the di� usion constant and to
calculate the conductivity of the system via the Einstein relation for di� usion and
conductivity. Numerical simulations of random walks on percolation clusters were
carried out by Mitescu et al. [43]. With the recognition that fractal lattices are a good
model for disordered systems, the problem of the ant in the labyrinth, originally
intended for percolation, was extended to fractals. The study of ®nitely rami®ed
fractals (see section 1.1) yielded rigorous results [44] for anomalous transport in
disordered media.

The theory of random walks has been applied in many areas of science, especially
as a model for transport phenomena. In uniform Euclidean systems, the mean-
square displacement of a random walker, hR2…t†i, is proportional to the time t,
hR2…t†i / t, for any number of spatial dimensions d (Fick’s law). However, in
disordered systems, this law is not valid in general. Rather, the di� usion law
becomes anomalous [45±49]:

hR2…t†i ¹ t2=dw ; …1:1†

with dw > 2. This slowing down of the transport is caused by the delay of the
di� using particles in the dangling ends, bottlenecks and backbends existing in the
disordered structure. Examples of disordered systems for which anomalous di� usion
has been observed are the incipient in®nite percolation cluster [45±49], di� usion-
limited aggregation (DLA) clusters [50], lattice animals [51, 52], and the Sierpinski
gasket [47] and other fractal lattices [53].

In addition to percolation, fractals and simple random walks, other models have
been applied to the study of the anomalous transport properties of disordered media.
Most notably, disordered systems have been modelled by regular lattices with a
random distribution of transition rates or of bond conductivities. This approach is
excellently reviewed by Alexander et al. [4]. On the level of random-walk theory, the
simple random-walk model has been generalized to the multi-state random-walk [54]
and to the continuous-time random-walk (CTRW) [55] models. Many of the
anomalous transport results of disordered systems are reproduced by these models.
For recent reviews on random-walk theory, including the multi-state random walk
and the CTRW, see references [3, 14, 15]. The review of Haus and Kehr [3] contains a
complete discussion of the use of CTRWs for the understanding of transport in
disordered media. Because of the existing reviews of the approaches discussed above,
the emphasis of the present review is on the analysis of the anomalous transport
properties of disordered media using simple random-walk and scaling theory,

Di� usion in disordered media 189

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
P
r
i
n
c
e
t
o
n
 
U
n
i
v
e
r
s
i
t
y
 
L
i
b
r
a
r
y
]
 
A
t
:
 
0
1
:
1
2
 
9
 
D
e
c
e
m
b
e
r
 
2
0
0
9



applied to the percolation and, especially, to the fractal models of disordered
structures.

1.1. Fractals
We begin with the de®nitions of the most basic properties of fractals. Fractals are

mathematical objects with a Hausdor � ±Besicovitch dimension that is not an integer.
A fractal is not smooth at every pointÐit was this property, of being fractured at
every point, that led Mandelbrot [23] to coin the term fractals (from the Latin
participle: fractus). Some examples [23] of well-known fractals are pictured in ®gures
1, 2 and 3. Fractals are best constructed in a recursive way. Thus, for example, the
Koch curve (®gure 1) is constructed by starting with a unit segment. The middle
third section of this segment is erased and replaced by two other segments of equal
length 1

3
. Next, the same procedure is repeated for each of the four resulting segments

(of length 1
3
). The process is iterated ad in®nitum. The limiting curve is of in®nite

length, yet it is con®ned to a ®nite region of the plane. The best way to characterize it
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Figure 1. Koch curve: (a) the iteration process by which it is constructed; (b) self-
similarityÐthe central `snowman’ is surrounded by two exact copies of itself.

Figure 2. The Sierpinski sponge.
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is by using its Hausdor� ±Besicovitch or fractal dimension, df . In a Koch curve

magni®ed by a factor of three there ®t exactly four of the original curves. Therefore

its fractal dimension is given by 3df ˆ 4, or df ˆ ln 4= ln 3 ˆ 1:262:
When calculating df , we notice another striking property of the Koch curveÐthe

property of self-similarity . Indeed, if we examine the Koch curve, or the Koch

snow¯ake, as it is frequently called, we notice that there is a central object in the

®gure that is reminiscent of a snowman. To the right and to the left of this central

snowman, there are two other snowmen, each being an exact reproduction only
smaller by a factor of 1

3
. Each of the smaller snowmen has in turn two still smaller

copies of themselves to their right and left, etc.

The Sierpinski sponge of ®gure 2 is constructed by starting from a cube,

subdividing it into 3 £ 3 £ 3 ˆ 27 smaller cubes, and taking out the central small

cube and its six nearest neighbours. Each of the remaining 20 small cubes is
processed in the same way, and the whole procedure is iterated ad in®nitum. After

each iteration, the volume of the sponge is reduced by a factor of 20
27

, while the total

surface area increases. In the limit of the fractal sponge, the surface area is in®nite,

while the volume vanishes. This is consistent with the fractal dimension of the
Sierpinski sponge, which is given by 3df ˆ 20, or df ˆ ln 20= ln 3 ˆ 2:727. Perhaps

the most famous example of a fractal is the Sierpinski gasket of ®gure 3. It is

constructed from an equilateral triangle, subdividing it into four smaller triangles

and taking out the central triangle. This generator is iterated ad in®nitum. The

resulting Sierpinski gasket has a fractal dimension given by 2df ˆ 3 or df ˆ
ln 3= ln 2 ˆ 1:585.

The great attraction of the Sierpinski gasket is that many physical problems

involving it can be solved exactly. This is due to the self-similarity property and to

the fact that the Sierpinski gasket is ®nitely rami®ed. A fractal is ®nitely rami®ed

[24, 44] if any bounded subset of the fractal can be isolated by cutting a ®nite
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Figure 3. Sierpinski gasket in d ˆ 2: (a) the iteration process from a triangular genus;
(b) a Sierpinski gasket drawn to the sixth generation.
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number of bonds, interactions or sites. Thus the Sierpinski gasket and the Koch
curve are ®nitely rami®ed, but the Sierpinski sponge is in®nitely rami®ed. These
two properties, of self-similarity and of being ®nitely rami®ed, enable an exact
renormalization-group approach for most physical problems considered on the
Sierpinski gasket.

The fractal dimension df and rami®cation, ®nite or in®nite, are just two of the
parameters characterizing fractals. Many other exponents and characterizations are
needed in order to emphasize other aspects and properties of fractals. Thus, for
example, the concept of lacunarity [23, 24, 56] is related to the degree of homogeneity
of a fractal and to the extent that it is translation-invariant . The fracton [45] or
spectral [49] dimension ds is an exponent describing the scaling of the density of
states with the energy on a fractal. The chemical exponent ~̧̧ [57] describes the scaling
of the number of bonds connecting two points on a fractal along the minimal or
chemical path between them. Some of these exponents and concepts are used in the
text. Their exact de®nition and a more detailed explanation will be presented when
needed (see also table 9).

All of the above examples of fractals are deterministic fractals, meaning fractals
that are constructed by a rigorous deterministic recursive law. There are, however,
many other objects that have the self-similarity property characteristic of fractals,
but only in a statistical sense. For these objects a fractal dimension df is still easily
de®ned by the scaling of their mass M with their linear size L:

M ¹ Ldf : …1:2†

It was ®rst realized by Mandelbrot [23] that many objects in nature are of a
statistical-fracta l shape. These range from polymers and coastlines to clouds and
the pockmarked surface of the Moon. There is experimental evidence [58±62] that
some real aggregates, such as gold colloids and silica-colloid aggregates, have a
fractal structure (®gure 4). A number of fractal models have been applied to physical
problems; di� usion-limited aggregation [63] has been used as a model for real
aggregates [8], dielectric breakdown [64], growth processes [11], viscous ®ngering
[30, 65, 66] and snow¯akes (J. Nittman and H. E. Stanley, preprint); percolation
theory [18, 19] is being used as a model for gelation [10], porous media and fractures
[2]; and self-avoiding walks [67, 68] or other fractals [69, 70] are being used in
modelling polymers [71]. These subjects have been discussed in recent books, reviews
and conference proceedings [23±28].

1.2. Random walks
Throughout this review, we refer to a simple random walk on a lattice as model

for di� usion [72]. In a simple discrete random walk the walker advances one step in
unit time. Each step is taken to a nearest neighbour of the site. In a disordered
system, such as a percolation cluster, not all of the nearest neighbours belong to the
substrate. The simple random walker can step with equal probability to any of the
nearest neighbour sites that belongs to the substrate. As a matter of fact, there are
several ways of assigning transition probabilities for stepping from site to site. Some
of the most common and useful methods are summarized in section A.3 of the
appendix.

One of the most important physical parameters describing a random walk is the
mean-square displacement hR2…t†i covered by the walker after having stepped t steps
(or, equivalently, after a time t). Denote the walker steps by u1; u2; . . . ; ut. Then
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hR2…t†i ˆ
Xt

iˆ1

ui

Á !2* +
ˆ t ‡ 2

Xt

i>j

hui · uji: …1:3†

For normal Euclidean space the correlations hui · uji are all zero. Thus for Euclidean
space one has the usual result for normal di� usion that hR2…t†i ˆ t.

A simple random walk is statistically self-similar. To see this, consider the
random walk as it looks when one regards n consecutive steps as one single
superstep. Each of the supersteps is a random jump r from the present site of the
walker to a neighbouring site. The random supersteps are distributed according to a
probability function Pn…r†. In the limit that n ¾ 1, Pn…r† tends to a Gaussian
distribution. This is a simple result of the Central-Limit Theorem. It is evident that,
statistically, the same random walk results for di� erent values of n, provided that n is
large enough. The only di� erence between walks with n ˆ n1 and with n ˆ n2 6ˆ n1 is
that in the ®rst case a step takes a time ½1 ˆ n1, whereas in the second case the time
needed is ½2 ˆ n2. Also, the average length of a step is n

1=2
1 in the ®rst case and n

1=2
2 in

the second case. This means that if we scale time as t ! ¶t and length as r ! ¶1=2r
then two walks with n2 ˆ ¶n1 will be exactly equivalent under this scaling. Hence the
simple random walk is statistically self-similar. Another consequence is that the
simple random walk is a statistical fractal. Upon dilation of space by a factor of ¶1=2,
the number of steps (or the `mass’ of the walk) increases by a factor of ¶. Therefore
the fractal dimension of a random walk is dw ˆ ln ¶= ln ¶1=2 ˆ 2. It is a curious result
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Figure 4. Example of gold-colloid aggregate made by Weitz and Oliveria [61]. Direct
analysis in terms of (1.2) gives df ˆ 1:75.
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that random walks performed on disordered but statistically self-similar structures

are still self-similar themselves, exactly as in Euclidean space. The only di� erence is

that the usual di� usion exponent, dw ˆ 2 is no longer equal to 2. Thus di� usion

becomes anomalous .

The outline of the review is as follows. In section 2 the Sierpinski gasket is used as
an example to de®ne and to calculate various concepts related to transport proper-

ties. In percolation clusters above criticality, the classical phonons found at length

scales greater than the correlation length ¹ give way to fractons , which are excitations

in length scales smaller than ¹. Also included in section 2 is a discussion of fractons

and of the Alexander±Orbach [45] conjecture that the related fracton dimensionality

ds is 4
3

for percolation in any dimension.

Transport properties of percolation clusters, a model for disordered media, are

reviewed in section 3. The topics covered include scaling theories (which relate the
di� usion exponents to the conductivity exponents), the chemical distance (which is

the shortest path on a structure connecting two sites and is a natural metric when
dealing with di� usion) and numerical results.

For loopless structures some of the long-range correlations (associated with

loops) do not exist. This greatly simpli®es the study of such structures, enabling one

to obtain an exact relation between dynamical transport exponents and static

geometrical exponents. Such a relation has not yet been found for structures with

loops, such as percolation clusters. `Random combs’, i.e. comb-like structures with a

random distribution of the length of their teeth, are exactly solved for their transport

properties. A distribution of lengths of the teeth can be replaced by a distribution of
transition probabilities from site to site of a random walker on a (one-dimensional)

line. Random combs are used to model transport phenomena on fractals and shed

light on the problem posed by the more complex structures. These subjects are

reviewed in sections 4 and 5.

A bias ®eld applied to a di� using particle in a disordered medium has two

opposite e� ects. On the one hand, the particles are pushed in the direction of the

®eld, giving rise to a drift velocity. On the other hand, the ®eld traps the particles in

the dangling ends: in order to exit a dangling end, the particle must move against the

®eld. These two opposite e� ects give rise to a dynamical phase transition. For a ®eld
strength E smaller than a critical value Ec, the particles experience a ®nite drift

velocity. This velocity vanishes for E > Ec, and anomalous di� usion takes place,

with a ®eld-dependent critical exponent. The dynamical phase transition is predicted

from the exact solutions of biased di� usion on a comb, and is obtained numerically

in simulations of biased di� usion on percolation. Biased di� usion is reviewed in

section 6.

Section 7 contains a discussion of the problems of trapping of di� using particles

in the presence of random traps and of di� usion-controlled reactions. Finally,
several miscellaneous topics are covered in section 8, such as di� usion of particles

with hard-core interactions, di� usion on deterministic fractals, and self-avoiding

walks on fractals.

Finally, a word is in order about the citing of references. For many topics, the

number of references is so large that we have chosen to cite representative articles

rather than to attempt to be exhaustive. No implication is intended of the import-

ance of articles cited relative to articles not cited. We apologize in advance for those

cases where our selection was clearly faulty.
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2. Anomalous di� usion on fractals
In this chapter we discuss various concepts related to di� usion in disordered

media. Anomalous di� usion is most easily analysed on exact fractal lattices with a
®nite rami®cation, for which many of its properties can be calculated exactly [24, 44,
73]. It is convenient to use di� usion on the Sierpinski gasket (®gure 3) as our major
example. Although an exact fractal lattice is not a disordered medium, di� usion on a
fractal exhibits anomalies similar to those present in disordered media. This is due to
the obstacles, holes or traps, at all scales of length, appearing in both types of
structures.

The fractal dimension of the d ˆ 2 Sierpinski gasket is df ˆ ln 3=ln 2, since by
magnifying the scale by a factor of 2, the mass is seen to increase by a factor of 3. For
the Sierpinski gasket in d dimensions the fractal dimension is df ˆ ln …d ‡ 1†= ln 2.
Note also the self-similarity of the Sierpinski gasket. On magnifying a small triangle
of the Sierpinski gasket, which itself consists of an in®nite hierarchy of smaller
triangles, to the size of the whole gasket, both the magni®ed and the original pictures
look exactly the same.

2.1. Di� usion on the Sierpinski gasket
To illustrate anomalous di� usion, imagine a random walker on the Sierpinski

gasket. At each step the walker chooses randomly to move to one of the (four)
nearest-neighbour sites on the gasket.{

We then look at the mean-square displacement after N steps, hR2
Ni. Because of

the self-similarity of random walks in Euclidean lattices [23], we expect the walk on
the Sierpinski gasket to be self-similar as well. Thus for large N

hR2
Ni ¹ N2=dw ; …2:1†

where dw is the anomalous-di � usion exponent. Note that dw is in fact the fractal
dimensionality of the path of the random walker on the gasket [74].

A straightforward way to calculate dw is to apply the exact enumeration method
(see section A.2 of the appendix), in which the square displacements R2 of all
possible random walks starting from a common origin are averaged. This yields the
exact result for hR2i. A plot of ln hR2

Ni1=2 as a function of ln N is presented [47] in
®gure 5. It is evident from the plot that after a transient of about ten steps the mean-
square displacement follows a power law with an anomalous-di � usion exponent
dw ˆ 2:32 § 0:01. We note that this result is independent of the origin, although in
general (2.1) implies an averaging over di� erent origins as well as on the walks
emanating from each.

There exist some simple renormalization schemes [44, 75, 76] for the calculation
of the exact value of dw for the gasket. Consider, for example the mean transit time T
needed to traverse a gasket unit from one of its vertices to one of the remaining
vertices O (®gure 6 (a)) [76]. One can then calculate the corresponding time T 0 for
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{ It has been proved by S. Goldstein (preprint, 1987) that di� usion in the Sierpinski gasket (a

Cantor set of Lebesgue measure zero) is the limiting case of a (discrete) random walk on the `Sierpinski

lattice’. The Sierpinski lattice is the object obtained by iterating the genus of ®gure 1 (a) a ®nite number

of times. Thus the smallest length scale in the Sierpinski lattice is the length of the bonds of the genus.

In contrast, the Sierpinski gasket has no ®nite length associated with it. Because of the equivalence of

the gasket and the lattice we do not make a distinction between the two.
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exiting a rescaled fractal unit by a factor of two (®gure 6 (b)). This is done by
exploiting the Markov property of the random walk on the fractal. Thus T 0 equals
the time T to exit the ®rst gasket unit, plus A, the mean transit time needed to leave
the rescaled unit from then on. Using the same reasoning for the times A and B (the
mean exit times starting from the decimated internal vertices), one gets

S. Havlin and D. Ben-Avraham196

Figure 5. Plot of ln N as a function of ln hR2
Ni1=2

on a Sierpinski gasket using the exact-
enumeration method.

Figure 6. Rescaling of transit time for traversing the gasket. The walker enters the gasket at
the top vertex and (a) takes a time T to exist through the lower O vertices. (b) The
rescaled gasket, T ! T 0 and A and B are transit times from the internal (decimated)
vertices to the lower O-vertices.
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T 0 ˆ T ‡ A;

4A ˆ 4T ‡ A ‡ B ‡ T 0;

4B ˆ 4T ‡ 2A:

9
>>=

>>;
…2:2†

The solution is T 0 ˆ 5T (and A ˆ 4T , B ˆ 3T), which is the rescaling of time for a
di� usion process on the gasket, upon the rescaling of length by a factor of two. It
follows that dw ˆ ln 5= ln 2 ˆ 2:322. Note the agreement with the result of the exact
enumeration presented earlier. This renormalization scheme is easily generalized for
the d-dimensional Sierpinski gasket, yielding for the analogous transit times

T 0 ˆ T ‡ A;

2dA ˆ 2dT ‡ …d ¡ 1†A ‡ …d ¡ 1†B ‡ T 0;

2dB ˆ 2dT ‡ 2A ‡ …2d ¡ 4†B;

9
>>=

>>;
…2:3†

with the solution T 0 ˆ …d ‡ 3†T …and A ˆ …d ‡ 2†T , B ˆ …d ‡ 1†T† and dw…d† ˆ
ln …d ‡ 3†= ln 2. This result can be derived by means of a calculation of the
resistance exponent for the gasket done by Gefen et al. [44] (see the next section).

2.2. Conductivity and di� usion: the Einstein relation
One of the main reasons for the interst in di� usion in disordered media is its

immediate relation to the conductivity of the medium. The relation between di� usion
and conductivity is established{ via the Einstein relation

¼dc ˆ e2n

kBT
D; …2:4†

where ¼dc is the d.c. conductivity, n is the carrier density and D is the di� usion
constant

D ² hR2
Ni=N ; N ¾ 1: …2:5†

In the present context, the carrier density n means the density of the substrate. This
scales with length R as n ¹ Rdf¡d , where df is the fractal dimension of the substrate.
The conductivity exponent ~·· is de®ned by the scaling of the conductivity ¼dc ² ¼
with length R:

¼…R† ¹ R¡~··: …2:6†

Using (2.1) and (2.5), one obtains from the Einstein relation [45]

N ¹ R2¡d‡~··‡df ² Rdw ; …2:7 a†
or

dw ˆ 2 ¡ d ‡ df ‡ ~·· ² df ‡ ~±±: …2:7 b†

In the last equation we have used the resistance exponent ~±±, de®ned by the scaling of
resistance with length %…R† ¹ R

~±± …the relation between resistance and conductivity of
a bulk sample is such that ~±± ˆ 2 ¡ d ‡ ~··†.

Returning to the example of the Sierpinski gasket, we mention that ~·· or ~±± are
easily calculated by an exact renormalization procedure [44]. In d dimensions
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{ Y. Gefen and I. Goldhirsch (preprint, 1987), studied the question whether the Einstein relation

holds for disordered random media (see also references [77, 78]). They ®nd that it holds, with a

rede®nition of time. This time conversion is of course irrelevant for the d.c. conductivity.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
P
r
i
n
c
e
t
o
n
 
U
n
i
v
e
r
s
i
t
y
 
L
i
b
r
a
r
y
]
 
A
t
:
 
0
1
:
1
2
 
9
 
D
e
c
e
m
b
e
r
 
2
0
0
9



~±± ˆ ln ‰…d ‡ 3†=…d ‡ 1†Š= ln 2. Combining the fractal dimensionality of the gasket
df ˆ ln …d ‡ 1†= ln 2 with (2.7 b) and the above result reproduces the result
dw ˆ ln …d ‡ 3†= ln 2, which was derived earlier in this section.

The usefulness of di� usion for the conductivity problem is now evident. From
(2.7 b), we can see that it is possible to obtain the value of the conductivity exponent

~·· from a knowledge of the fractal dimension and the anomalous di� usion exponent
of the medium. Until this method for measuring conductivity was discovered, the
alternative was a direct calculation of the conductivity, involving the solution of
Kirchho� ’s equations for the speci®c disordered substrate under discussion. The
complications involved limited calculations to samples of moderate size, even then
requiring shortcuts and some very sophisticated algorithms [79]. As a result, there
was a large uncertainty, for example, concerning the numerical value of ~·· for
percolation clusters. In contrast, the evaluation of dw is easily carried out by either a
Monte Carlo simulation, or by an exact enumeration procedure. The fractal
dimensionality of the substrate, which is also required for the calculation of ~··,
(2.7 b), can be derived from the di� usion problem as well. It is related to the
probability of the random walker returning to the origin (details are presented in the
next section). It can also be obtained by a straightforward geometrical measurement
based on its de®nition. In summary, (2.7 b) provides us with a highly accurate yet
easy method of measuring the conductivity exponent. This was used to obtain
reliable estimates of ~·· for percolation clusters [80±83], lattice animals [51, 52],
di� usion-limited aggregates [50, 84], and other random substrates [85±87].

Another e� cient numerical method for calculating the conductivity exponent
of random resistor networks is the transfer-matrix technique of Derrida and
Vannimenus [88]. Technical details of this method as well as a computer program
for three-dimensional percolation systems have been given in reference [89]. This
method has been used by Zabolitzky [90] to obtain accurate estimates of the
conductivity exponent in two-dimensional percolation. For more details of
numerical results in percolation see section 3.

2.3. Fracton (spectral) dimensionality and the Alexander±Orbach conjecture
The problem of di� usion is closely related to the density of states [91] in the

substrate. This can be best understood from the relation [4, 92] between the density
of states …°† and the probability P…0; N† of the random walker returning to the
origin

P…0; N† ˆ
…1

0

…°† exp …¡°N† d°: …2:8 a†

After performing N steps, the number of sites a random walker has visited is
proportional to the volume Rdf ¹ Ndf =dw . Therefore the probability of returning to
the origin scales as [45]

P…0; N† ¹ 1=Rdf ¹ N¡df=dw : …2:8 b†

Using this result in (2.8 a), one obtains the following expression for the density of
states on the substrate:

…°† ¹ °df=dw¡1 ² °ds=2¡1: …2:9†

This is similar to the usual expression for Euclidean space, …°† ¹ °d=2¡1, except
that d is replaced by 2df=dw. The ratio 2df=dw is then identi®ed as the relevant
dimension for the density of states in a substrate, and is called fracton dimensionality
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[45] or spectral dimensionality [49]. We denote it by ds (`s’ for spectral) to avoid
ambiguity with the fractal dimensionality df . The fracton dimensionality also
characterizes the number of distinct sites, S…N†, visited by the random walker, as
can be seen from (2.8 b):

S…N† ¹ Nds=2: …2:10†

In recent years there has been much excitement about the Alexander±Orbach
(AO) conjecture [45] that ds ˆ 4

3
for percolation clusters at criticality in any

dimension above 1. The fracton dimensionality is exactly 4
3

in d ˆ 6, and is
surprisingly close to 4

3
for 1 < d < 6, giving rise to this conjecture. Much theoretical

[93±97] and numerical [82, 90, 98±101] e� ort has been made in the attempt to prove
or disprove the AO conjecture. There have also been attempts to generalize the AO
conjecture to other statistical fractals besides percolation [50, 93]. It is now clear that
it does not generalize to all statistical fractals. For example, the AO conjecture
cannot hold simultaneously for percolation clusters and for the backbones of
percolation clusters [102].

One of the many attempts to justify the AO conjecture was carried out by
Rammal and Toulouse [49]. They suggest that the number of distinct sites S…N†
visited by a random walker after N steps is related to the number of growth sites
G…N† …those sites with accessible neighbours out of S…N†† via the equation

dS…N†
dN

¹
G…N†
S…N† : …2:11†

The AO conjecture then follows if G…N†=S…N† ¹ ‰S…N†Š¡1=2 ¹ R…N†¡df =2, or
G…N† ¹ R…N†df=2. It has been argued [95, 103] that G…N† might scale as a simple
sphere cut of the fractal substrate [24], leading to G…N† ¹ R…N†df¡1, which rules
out the AO conjecture. One ®nds that the di� erence between df=2 and df ¡ 1 for
two-dimensional percolation (for which most of the numerical work is performed) is
very small, making it di� cult to reach a decision in this dispute. However,
calculations have been performed [80] on an exact fractal lattice, similar to the
Sierpinski gasket (®gure 7) and the results show that (a) the Rammal±Toulouse
equation (2.11) is closely satis®ed and (b) the front of the di� usion process does
not scale as a spherical cut of the fractal substrate. Note that (a) alone does not prove
the AO conjecture, but (b) eliminates the doubt cast on it by the spherical-cut
argument. Indeed, the plot of ln G…N† against ln S…N† (®gure 8) for the fractal lattice
in ®gure 7 shows that G…N† ¹ S…N†x, with x ˆ 0:53 § 0:01, in contrast with the
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Figure 7. A fractal similar to the Sierpinski gasket. The critical exponents are the same as
for the Sierpinski gasket. The fractal is shown to four generations.
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value x ˆ …df ¡ 1†=df ˆ 0:369 that is predicted by the assumption of a sphere cut.
The value of x obtained from ®gure 8 is consistent with the theoretical value,
x ˆ 2 ¡ 2=ds ˆ 0:535 obtained from (2.11), thus supporting the Rammal±Toulouse
equation. One can also argue against a spherical-cut front of di� usion based on
(a) alone. If we accept (a), that the Rammal±Toulouse equation is valid, then
G…N† ¹ R2df¡dw . In general, this contradicts the spherical-cut assumption that
G…N† ¹ Rdf ¡1 (a speci®c example is the Sierpinski gasket for which dw and df

are exactly knownÐas previously shown). Exceptions are loopless fractal
structures (section 4), for which the chemical metric coincides with the Pythagorian
metric, dl ˆ df . There dw ˆ 1 ‡ df and the front of di� usion is a spherical cut,
without contradicting the fact that the Rammal±Toulouse equation holds. For a
more detailed discussion of the front of di� usion on fractals see references [95, 96,
101±103].

There is now a large body of evidence against the AO conjecture. It violates an

°-expansion [95] around d ˆ 6. Enormous Monte Carlo simulations [82, 90,
98, 99], seem to rule out the conjecture for two-dimensional percolation. The
disagreement of the °-expansion with the conjecture proves that it does not hold
for d ˆ 6 ¡ ° when ° is in®nitesimally small. However, it could be true that ds ˆ 4

3
when ° becomes an integer. Thus there is no rigorous analytical disproof of the AO
conjecture for percolation. Also, in spite of the impressive amount of numerical work
disproving the conjecture, we consider it to be an open question whether or not it is
valid for percolation. For numerical results supporting the AO conjecture see
references [100, 104]. In addition, there exists a very recent consistency argument
supporting this conjecture, which uses the Io� e±Regel criterion for localization of
the fractons [105].

The great interest in the conjecture results not only from the universal value
assigned to ds, but also from the fact that it provides a relationship between

S. Havlin and D. Ben-Avraham200

Figure 8. Plot of ln G…N† against ln S…N† for di� usion on the fractal described in ®gure 7.
The circles represent the numerical data and the solid line is drawn from the
prediction of the Rammal±Toulouse equation (2.11) [49].
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dynamic and static exponents. Indeed, by assuming ds ˆ 4
3

ˆ constant at the exact
relation

ds ˆ 2df =dw; …2:12†

one immediately obtains dw, characterizing the dynamic process of di� usion, in terms
of df , which describes the static geometrical scaling of the mass of the substrate. The
question of the relationship between static and dynamic exponents has attracted
considerable attention. The AO conjecture is one of many attempts, such as the de
Gennes proposition [106], and the Skal and Shklovski model [107] to provide an
answer to this question.

Finally, we note that ds ˆ 2 is a critical dimension for the problem of di� usion on
fractals, analogous to d ˆ 2 for di� usion in Euclidean space. Indeed, for ds > 2,
(2.12) tells us that dw < df , meaning that a random walk on such a substrate is no
longer recurrent. There is therefore interest [49, 53] in exact fractal lattices with a
tunable ds, which would enable us to study the transition at ds ˆ 2. In particular,
di� usion on fractals with ds > 2 has been almost completely neglected, primarily
because of the lack of examples of fractal lattices with ds > 2. In reference [53] such
fractal lattices are suggested and bounds are given for the conductivity and di� usion
exponents. However, no numerical study of di� usion on these lattices has been
published. A serious study of di� usion on substrates with ds > 2 is therefore
desirable.

2.4. Probability densities
When dealing with di� usion or random walks, probability densities are of

general interest and of great importance [14, 72, 108]. Consider for example the
probability density P…r; t† of ®nding a random walker at r at time t, having started at
the origin at t ˆ 0.{ This function enables one to calculate the average moments

hrk…t†i ˆ
…

rkP…r; t† ddr: …2:13†

The probability of return to the origin (discussed in the previous section) is simply
P…0; t† and its value provides us with the value of ds for the fractal medium (equation
(2.8 b)). In addition, P…r; t† plays an important role in the Flory theory for SAWs [10]
(see section 8.4 for details).

For a di� usion problem in Euclidean space [14],

P…r; t† ˆ
d

2pa2t

³ ´d=2

exp ¡
dr2

2a2t

³ ´
; …2:14†

where a2 is the mean-square distance travelled in unit time. We show now that this
simple Gaussian behaviour does not generalize to disordered (fractal) substrates. As
an example, consider the relatively simple case of di� usion on self-avoiding walks.
SAWs have a random fractal structure [24, 68], but are topologically linear.
Therefore the di� usion process along a SAW is normal, just as in one-dimensional
space. Thus, using the number of SAW steps, l, as a (chemical) distance coordinate
[57, 109] rather than the Euclidean spatial distance r, one has, for ¿…l; t†, the
probability density to ®nd the walker at a distance l at time t,
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{ One may use a (discrete) time variable t ˆ N instead of the number of steps N.
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¿…l; t† ˆ 1

…2pt†1=2
exp ¡ l2

2t

³ ´
: …2:15†

Here we have assumed that each SAW step is of unit length. The relationship
between the number of steps of a SAW and the spatial coordinate is given by the
fractal dimensionality of the SAW, r…l†df ¹ l. However, more detailed information is
obtained from the probability density [110] P…r; l†, that an l-step SAW section is of
length r:

P…r; l† ˆ Al

³
r

l¸

´g

exp

µ
¡ a

³
r

l¸

´¯¶
; ¯ ˆ …1 ¡ ¸†¡1: …2:16†

Here g ˆ …® ¡ 1†=¸, and ¸ ˆ 1=df is the end-to-end exponent for the SAW. We
combine (2.15) and (2.16) in order to get the probability density PSAW…r; t† that a
random walker on a SAW is a distance r at time t after starting from the origin at
t ˆ 0:

PSAW…r; t† ˆ
…1

0

P…r; l†¿…l; t† dl: …2:17†

Using a steepest-descent approximation, and the fact that for di� usion on a SAW
dw ˆ 2df , we ®nd for the exponential term

PSAW…r; t† ¹ exp

µ
¡

³
r

t1=dw

´u¶
; u ˆ

³
1 ¡ 1

dw

´¡1

: …2:18†

For ¸ ˆ 1, dw ˆ 2 (normal one-dimensional space) we recover the Gaussian distri-
bution (2.14), but for ¸ < 1 (as is the case for SAWs in d > 1) PSAW…r; t† has a non-
Gaussian structure. Note, however, the striking similarity between PSAW…r; t† of
(2.18) and P…r; l† of (2.16). This similarity becomes evident when one realizes that
1=dw is in fact ¸w, the end-to-end exponent for the path of the random walker. We
see that the convoluted fractal structure of the SAW gives rise to a non-Gaussian
probability density. We expect to ®nd this non-Gaussian behaviour in more complex
fractal media as well (see section 4.4).

A recent topic of interest is the scaling behaviour (if any) of probability densities
[111±114]. The simplest scaling form that one expects is

P…r; t† ˆ rdf¡d

tds=2
¦

³
r

t1=dw

´
: …2:19†

Here the scaling of r with t1=dw comes from the anomalous-di � usion theory, and the
normalizing factor of tds=2 is required because of (2.9). The rdf¡d factor accounts for
the scaling of the density of the fractal substrate. Note that the probability density
for di� usion on a SAW, (2.18), scales as suggested in (2.19).

Several authors [111, 112] have considered the scaling form of P…r; t† on the
Sierpinski gasket, exploiting the Markov property of a random walker, and using
some approximations, to derive

P…r; t† ˆ rdf¡d

tds=2
exp ¡ rdw

t

³ ´
: …2:20†

It was suggested [111] that (2.20) is valid for all fractals. This is in disagreement
with (2.18) and with the result presented by Guyer [113], who used a numerical
renormalization, to obtain for the Sierpinski gasket
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P…r; t† ˆ rdf ¡d

tds=2
exp

µ
¡

³
r

t1=dw

´·¶
; u ˆ

³
1 ¡ 1

dw

´¡1

ˆ 1:76: …2:21†

Note the similarity between this result and the probability distribution of a RW on a
SAW, (2.18). This form of probability distribution is found also for some loopless
structures (other than SAWs) (see section 4). S. Havlin and J. Kiefer (unpublished
work) ®nd yet a di� erent value for the exponent u, for random walks on the
Sierpinski gasket, using the exact enumeration technique (section A.2 of the
appendix), u ˆ 1:9 § 0:1. Numerical results (®gure 9) show good agreement with
the scaling form of (2.19). A best ®t to (2.21) yields u ˆ 1:9 § 0:1, which is close to
but somewhat di� erent from the value of u obtained by Guyer. It is possible [113]
that the di� erences between (2.20) and (2.21) are due to the di� erent ranges of
validity of P…r; t† in the two equations. The theoretical argument of reference [111]
exploits the Markov property, and the range r < t1=dw is of great importance.
However, the renormalization procedure of Guyer holds for r > t1=dw . It was
suggested by Guyer [113] that (2.20) might better describe the regime r < t1=dw ,
while (2.21) describes the case for which r > t1=dw . The question of the exact form of
P…r; t† for the Sierpinski gasket is not yet resolved, and more decisive research work
is necessary. Similar remarks apply to P…r; t† on percolation clusters (see reference
[114]). We present further details on this particular problem in section 3.5.

A direct consequence of the scaling of P…r; t†, (2.19), is the existence of a gap
exponent charcterizing all the moments of di� usion. Indeed, (2.19) yields

hrki ˆ
…

P…r; t†rk ddr ˆ
…

rdf ¡d

tds=2
¦

r

t1=dw

³ ´
rk ddr ˆ const £ tk=dw : …2:22†

Thus 1=dw is the gap exponent.
Recently, there have been many studies of cases of fractals, and the physical

phenomena associated with fractal structures, that are not characterized by a single
gap exponent, but rather by an in®nite hierarchy of exponents [115±123]. The lack of
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Figure 9. Plot of log10‰P…r; t†tds=2Š against …r=t1=dw †u for a Sierpinski gasket. The best linear
®t is achieved for u ˆ 1:9 § 0:1.
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a gap exponent rules out a scaling form like (2.19), and one of the questions to be
asked is whether this is the case for di� usion or fractals. If so, this might be the
reason for the many di� erent results for P…r; t† presented above. For further details
on this subject see section 3.5.

Another probability distribution of interest is S…r; t; R†, the survival probability
for a di� using particle starting at the origin at t ˆ 0, and surrounded by a perfectly
absorbing sphere of radius R. This function has proved to be essential for the
understanding of the physics of trapping [126±131]. In Euclidean space
S…0; t; R† ¹ exp …¡®dt=R2†, where ®d is a dimension-dependent constant [127]. In
the case of a random medium, we expect

S…0; t; R† ¹ exp …¡ct=Rdw †: …2:23†

This simple theoretical prediction is supported by various numerical test (B. L. Trus,
S. Havlin and D. Stau� er, preprint, 1987). We shall return to this probability density
and its applications in section 7.1.

Several other physical properties have been studied on the Sierpinski gasket. The
elasticity of the Sierpinski gasket has been studied by Bergman and Kantor [132],
trapping on the Sierpinski gasket by Zumofen et al. [133], rate processes by
Kopelman [41, 135] and waiting-time distribution by Robillard and Tremblay
[136]. The solution and the spectrum of the SchroÈ dinger equation on the Sierpinski
gasket has been studied by Domany et al. [137] and by Rammal and Toulouse [138].

3. Di� usion on percolation clusters
The percolation model [139, 140] has been found useful to characterize many

disordered systems, such as porous media, fragmentation and fractures [2], gelation
[8, 10], random-resistor insulator systems [20, 141], dispersed ionic conductors [142],
forest ®res [18, 143] and epidemics [144, 145]. For simplicity, we describe the site
percolation model [140] on a square lattice. Consider a simple square lattice for
which a fraction p of sites are randomly occupied and a fraction 1 ¡ p are empty.
Nearest-neighbour occupied sites form connected clusters. When p increases, the
average size of the clusters increases. There exists [146] a critical concentration
pc ˆ 0:592745 below which only ®nite clusters exist and above which a large
(`in®nite’) cluster is formed (see ®gure 10). The percolation transition at pc is
described by the probability P1 that a site in the lattice belongs to the incipient
in®nite cluster. Below pc, P1 ˆ 0, whereas above pc, P1 increases with p as

P1 ¹ … p ¡ pc† : …3:1†

The diameter of the clusters below pc is characterized by the correlation length ¹
which can be regarded as the mean distance between two sites belonging to the same
cluster. When p ! pc, ¹ diverges as

¹ ¹ … pc ¡ p†¡¸: …3:2†

The exponents  and ¸ are universal and depend only on the space dimensionality d
but not on the lattice structure. For d ˆ 2 the critical exponents are known exactly
[147] to be  ˆ 5

36
and ¸ ˆ 4

3
. For d ˆ 3 there exist numerical estimates [148, 149],

 º 0:44 and ¸ º 0:88. The upper critical dimension above which the mean-®eld
theory [125, 161] is valid is d ˆ dc ˆ 6. Mean-®eld percolation can be modelled by
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percolation on a Cayley tree (Bethe lattice). This model has been solved exactly [150],
yielding  ˆ 1 and ¸ ˆ 1

2
. For recent reviews on percolation see references [16±22].

The problem of di� usion on percolation clusters provides us with one of the most
valuable tools for the study of the topological properties of the clusters. Di� erent
geometrical models, such as the de Gennes model [106] and the links-and-nodes
model of Skal and Shklovski [107] for percolation, lead to di� erent predictions for
di� usion. The model that is most favoured is the fractal model introduced by
Kirkpatrick [16] and further developed by Gefen et al. [44], Mandelbrot and Given
[151] and de Arcangelis et al. [116]. Other geometrical models, such as the bubble
model (S. Redner and B. Kahng, private communication) for percolation, are
currently being studied. The Alexander±Orbach conjecture [45] that the fracton
dimensionality of percolation clusters at criticality is 4

3
for any Euclidean dimension

d > 1 has attracted considerable interest.
In this section we review the analogy of percolation to exact fractal lattices, the

theoretical and numerical results [47, 81±83, 152] for di� usion on percolation, and
their relationship to static exponentsÐdescribing the structure of the clusters. We
also review the chemical distance and its application to transport, and recent results
for continuum percolation [153±163].

3.1. Analogy with di� usion on fractals
A great amount of research [44, 151, 164] has led to the conclusion that

percolation clusters are fairly well described by fractals. The picture is as follows.
For p < pc (below the percolation threshold) there appear clusters of ®nite size with a
typical linear size ¹… p†. In fact ¹… p† can be regarded as the mean size of the clusters
or as their maximal size. There also appear clusters of a size much larger than ¹.
These are lattice animals [141, 165], and we neglect them in the present discussion
because of their scarcity (see, however, section 4.2). The clusters generated at p < pc

each have a statistical internal self-similarity property, which is characteristic of
fractals. This has been demonstrated by Sapoval et al. [166]. Actually, the fractal
dimensionality of these clusters has been shown to be df ˆ d ¡  =¸, both theor-
etically [16, 18, 167, 168] and numerically [164]. Thus, df ˆ 91

48
º 1:896 in d ˆ 2,

df º 2:5 in d ˆ 3, and df ˆ 4 in d ˆ dc ˆ 6. Percolation clusters at this regime are
therefore successfully modelled by exact fractal lattices of linear size ¹… p†, with the
corresponding spatial properties of fractal and fracton dimensionality, connectivity,
dead ends, etc. [44, 116, 151]. As p approaches pc from below, the characteristic size
of the ®nite clusters increases, until at p ˆ pc there appears an in®nite self-similar

Di� usion in disordered media 205

Figure 10. Square lattice of 20 £ 20. Sites have been randomly occupied with probability p
… p ˆ 0:20, 0.59, 0.80). Sites belonging to ®nite clusters are marked by full circles, and
sites on the `in®nite’ clusters are marked by open circles. (After Bunde [13].)
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cluster (with similar spatial characteristics to those of the ®nite clusters for p < pc).
The incipient in®nite cluster is then modelled by an in®nite fractal lattice, similar to
the lattices modelling the clusters for p < pc. For p 5 pc there are also ®nite clusters

in the empty spaces left by the incipient in®nite cluster. These are quite similar to the
®nite clusters below pc. Above the percolation threshold … p > pc† there is an in®nite
cluster, but a ®nite correlation length ¹… p†. We interpret ¹… p† as being a typical

distance up to which the in®nite cluster is statistically self-similar. As an example
[164], the mass of the in®nite cluster scale as M ¹ Rdf for R < ¹… p†, but for R > ¹… p†
self-similarity of the fractal is lost and the mass scales on the average as for a
homogeneous object, M ¹ Rd . Thus the in®nite cluster for p > pc might be modelled
by a regular lattice of fractal unit cels. Each fractal unit cell is of length ¹… p† and

similar in structure to the fractal lattices modelling percolation for p 4 pc.
There are three characteristic regimes for di� usion on percolation clusters. For

p > pc the in®nite cluster is homogeneous for R > ¹… p†, and di� usion is regular, with
dw ˆ 2. At criticality, p ˆ pc, the incipient in®nite cluster is self-similar in all length
scales, and anomalous di� usion takes place, with dw > 2. Finally, for p < pc, the

largest clusters are typically of a ®nite linear size ¹… p†, and hR…t†2i ¹ ¹2… p† when
t ! 1. These three regimes are illustrated in ®gure 11.

3.2. Two ensembles

When studying properties of percolation clusters, it is convenient to look at one
of two possible ensembles. The ®rst kind of statistical ensemble includes only
percolation clusters whose linear size is much larger than the typical length of the
physical phenomenon under discussion. Thus, since we are interested in di� usion,
such an ensemble will include those clusters whose size is much larger than the mean

span of di� usion. This ensemble, of large clusters, is usually generated at p slightly
below pc, and therefore its clusters have the same self-similarity as the incipient
in®nite cluster. Since the phenomenon being studied is of a linear size much smaller
than that of the cluster, end-e� ects are completely avoided, and for all practical

purposes the results are equivalent to those that one would have obtained from the
incipient in®nite cluster. The importance of this ensemble lies in the fact that it gives
critical exponents equal in value to those usually de®ned for the percolation
transition (critical exponents are traditionally de®ned for the properties of the

incipient in®nite cluster alone).

S. Havlin and D. Ben-Avraham206

Figure 11. Example of R ² hR2…t†i1=2 for di� usion on percolation clusters generated at
p > pc, p ˆ pc and p < pc on a square lattice. The dashed line with slope 1

2, representing
dw ˆ 2, is shown for comparison. (After Stau� er [18].)
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The other statistical ensemble is one that includes all the percolation clusters
(again usually for p < pc). This is independent of the typical linear size of the
phenomenon studied. Thus, for example, such an ensemble will include clusters
whose size is smaller than the typical di� usion span (as well as all clusters with a
larger size). This ensemble is natural, since this is the unrestricted ensemble that one
obtains in a simple percolation experiment. We denote the critical exponents
measured on this ensemble by a prime.

We now present [47, 48] some simple arguments for the relation between d 0
w, the

anomalous di� usion exponent for an ant `dropped’ on the ensemble of all
percolation clusters, and dw, the corresponding di� usion exponent on the incipient
in®nite cluster at p ˆ pc. For the ensemble of all clusters, di� usion can start on any
of the clusters, and consequently there exist two regimes. One is for clusters whose
linear size is smaller than the mean span of di� usion, and the other is for clusters for
which the random walker never reaches its edges (the clusters being too large). Then,
roughly, for a t-step random walk performed on an S-cluster (i.e. a cluster consisting
of S sites), we expect

r2
s …t† ¹

t2=dw …t2=dw < R2
s †;

R2
s …t2=dw > R2

s †;

(
…3:3†

where R2
s is the average squared size of an S-cluster:

R2
s ¹ S2=df : …3:4†

The mean hr2…t†i on all clusters can be calculated taking into account the probability
S1¡½ that the ant starts di� using on an S-cluster (at p ˆ pc)

hr2…t†ipˆpc
¹

X1

Sˆ1

S1¡½r2
s …t† ¹

XScross

Sˆ1

S1¡½S2=df ‡
X1

Scross

S1¡½ t2=dw

¹ S2¡½‡2=df
cross ‡ S2¡½

crosst
2=dw : …3:5†

The quantity Scross is the cluster mass for which the crossover occurs in (3.3):

S2=df
cross ¹ t2=dw : …3:6†

We see that the two contributions in (3.5) have the same singularity in t, and

hr2…t†i ¹ t2=d 0
w ¹ t2=dw‡…2¡½†df =dw

or
dw

d 0
w

ˆ 1 ‡ 1
2
df…2 ¡ ½† ˆ 1 ¡ 

2¸
: …3:7†

Here we have made use of the scaling relation [18] ½ ˆ …2d¸ ¡  †=…d¸ ¡  †.

3.3. Scaling theory
The simple arguments given in the preceding section lead to a prediction for

di� usion on percolation at criticality … p ˆ pc†. In practice, one can make numerical
simulations, or experiments, for any probability p below or above pc. It is therefore
desirable to develop a theory that is able to predict the exponents of interest
…dw and d 0

w† from results at any p. Such a theory is the scaling theory [47, 48], which
will now be discussed.
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We deal ®rst with the general ensemble which consists of all (unrestricted)
clusters. In the conducting phase of percolation, p > pc, the average di� usion
constant

D 0…t; p† ² hr2…t†i 0=t …3:8†

of a random walk is ®nite, in the limit t ! 1. This is because for p > pc the in®nite
conducting cluster is homogeneous at scales of length larger than ¹… p†, and a
random walk behaves on it as on Euclidean space (for hr2…t†i ¾ ¹2). In this limit the
Einstein relation (2.4) shows that the value of the di� usion constant is proportional
to the d.c. conductivity ¼… p† of the cluster (note that here the density of carriers n is
proportional to rd , since the mass of the in®nite cluster scales for r > ¹ as rd ). Indeed,
following a suggestion by de Gennes [42], (see also Kopelman [169]) computer
simulations of di� usion on percolation lattices have been used [43, 170] to determine
the conductivity exponent · ˆ ~··¸ via

D 0…t ! 1; p† ¹ ¼… p† ¹ … p ¡ pc†· … p > pc†: …3:9†

However, this behaviour holds only in the neighbourhood of pc, and for very large t,
such that the average span r…t† ² hr2…t†i1=2 of the walks is much larger than ¹. On the
other hand, when r 0…t† ½ ¹, one expects behaviour that is similar to that of
anomalous di� usion at the threshold pc, where D 0…t† vanishes algebraically as

D 0…t; pc† ¹ t…2¡d 0
w†=d 0

w : …3:10†

In practice the condition r…t† ¾ ¹ is hardly ever achieved in simulations near pc. This
limits the reliability of determining · via (2.7), and is one more reason for the need
for a method that incorporates the crossover from a ®nite di� usion constant above
pc, (3.9), to the behaviour at criticality, (3.10).

For p > pc and r…t† ¾ ¹ (i.e. t ! 1), (3.9) is expected to be valid. For p < pc and
t ! 1, the dominant contribution to r 0…t† comes from clusters whose linear size is
equal to or bigger than ¹ ¹ j p ¡ pcj¡¸. In each of these clusters r2…t† ¹ ¹2, but the
probability of being on one of these clusters is, by the usual percolation scaling
assumptions, proportional to j p ¡ pcj . Thus the average di� usion constant behaves
below pc as

D 0…t ! 1; p† ¹ t¡1… pc ¡ p†¡2¸‡ ; …3:11†

as also noted by Stau� er [141]. We now combine (3.9)±(3.11) in the following scaling
form:

D 0…t; p† ˆ t2=d 0
w¡1¿

p

pc

¡ 1

³ ´
t…d 0

w¡2†=·d 0
w

µ ¶
: …3:12†

This is in agreement with the discussion behaviour of D 0 if

¿…x† ¹

x· as x ! 1;

…¡x†¡2¸‡ as x ! ¡1;

const. as x ! 0:

8
>><

>>:
…3:13†

Consistency with (3.11) in powers of t requires

d 0
w ˆ 2 ‡ ·=¸ ¡  =¸

1 ¡  =2¸
: …3:14†

S. Havlin and D. Ben-Avraham208
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This result was derived also by Webman [46]. The crossover from the behaviour
below pc, (3.11), to that above pc, (3.9), occurs at xcross, a ®xed agrument of ¿…x†.
Then

t 0
cross ¹ j p ¡ pcj¡ d 0

w=…d 0
w¡2† ˆ j p ¡ pcj ¡2¸¡·: …3:15†

Very similar arguments can be made for the restricted ensemble of large clusters.
Since the probability of being on clusters with sizes that are equal to or greater than ¹
behaves as j p ¡ pcj , both above and below pc, it is expected that

(a) for p > pc and r…t† ¾ ¹, D ¹ … p ¡ pc†·¡ ;
(b) for p < pc and t ! 1, D ¹ t¡1j p ¡ pcj¡2¸ ; and
(c) for r…t† ½ ¹, D ¹ t2=dw¡1.

The scaling function of D, which is consistent with these properties, is given by

D…t; p† ˆ t2=dw¡1g
p

pc

¡ 1

³ ´
t…dw¡2†=…·¡ †dw

µ ¶
; …3:16†

where

g…x† ¹

x·¡ as x ! 1;

…¡x†¡2¸ as x ! ¡1;

const. as x ! 0:

8
>><

>>:
…3:17†

Again consistency yields a relation between dw and ·:

dw ˆ 2 ‡ · ¡ 

¸
: …3:18†

Note that this result is in agreement with (2.7), which was derived in a very di� erent
way. Also the ratio of (3.18) and (3.14) yields dw=d 0

w ˆ 1 ¡  =2¸, exactly as given in
(3.7). Relations between the moments of typical di� usion times and the resistive
correlations in percolation systems were found recently by A. B. Harris, Y. Meir and
A. Aharony (preprint, 1987).

One further interesting result is the fact that in (3.16) the crossover occurs at

tcross ¹ … p ¡ pc†¡…·¡ †dw=…dw¡2† ˆ … p ¡ pc† ¡2¸¡·; …3:19†

which scales exactly the same as t 0
cross. This crossover, derived also by Straley [134], is

also re¯ected in a crossover in the density of scales …°† in the corresponding
vibrational problem [171±173]. For percolation systems above pc, …°† crosses over
from a phonon behaviour °d=2¡1 for small ° (large t) to a fracton behaviour

…°† ¹ °ds=2¡1 for large °. Such a crossover has been observed experimentally in
randomly dilute magnetic systems [31, 32], in silica aerogels [33], in silica smoke-
particle aggregates (D. Richter, T. Freltoft and J. K. Kjems, preprint, 1987) and in
glassy ionic conductors [34].

3.4. Chemical distance metric
The chemical distance between two sites is de®ned as the shortest path on the

structure connecting the two sites. This concept has recently been studied very
extensively [57, 174±176, 177±180, 186±188], and has been found [52, 180, 181, 182]
to be useful in characterizing the growth of random aggregates [84, 182], the
spreading of forest ®res [181] or epidemics, and in particular the transport properties
of loopless aggregates [52, 182]. For loopless aggregates, the chemical distance
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properties determine entirely the dynamics of the system (see section 4). Using the

concept of chemical distance, one can obtain bounds [183] on the transport critical

exponents for disordered aggregates such as percolation clusters. This is achieved by

neglecting the e� ect of loops in these structures.

In the following we introduce one new exponent related to the chemical distance.

In ®gure 12 we show [57] a part of the in®nite percolation cluster at criticality

generated on a triangular lattice using the growth method of Alexandrowicz [175]

and Leath [184]. Occupied sites of the cluster are designated by letters. Dots

represent unoccupied perimeter sites and blank spaces represent non-perimeter

unoccupied sites. Suppose that one chooses an arbitrary reference point and

designates it by an asterisk. The occupied nearest neighbours of that site, designated

by B, represent a `shell’ lying at chemical distance l ˆ 1 from the reference site. The

next-nearest-neighbou r sites are designated by C and constitute a shell at chemical

distance l ˆ 2, and so forth. Thus l is the smallest number of nearest-neighbour

connections within the cluster, by which a site is separated from the origin. We
de®ne the following quantities, which are functions of l: G…l† is the number of

occupied sites in the lth shell, S…l† is the total number of occupied sites up to the lth

shell, and R…l† is the average Pythagorean distance between the reference site and a

site in the lth shell.

S. Havlin and D. Ben-Avraham210

Figure 12. Example of a part of an in®nite percolation cluster grown at criticality. The
asterisk ¤ is an arbitrary point in the cluster. Sites belonging to shells of successive
chemical distance are designated by successive letters of the alphabet (starting with
B), and dots designate sites that were tested and found to be empty. The cluster was
generated on a triangular lattice, obtained by a square lattice regarding sites along
one of the diagonal directions as nearest neighbours.
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The average quantities ·GG…l†, ·SS…l† and ·RR…l† for the incipient in®nite percolation
cluster at pc can be related as follows. We assume that these averages vary as powers
of l. The chemical-distance exponent ~̧̧ is de®ned [57] by

R2 ¹ l2 ~̧̧ ² l2=dmin: …3:20†

The exponent dmin can be understood as the fractal dimension of the shortest path
[185], i.e. the path of minimum length. For percolation [57] in d ˆ 2, ~̧̧ ˆ 0:88 and for
d ˆ 3, ~̧̧ º 0:75. For d ˆ dc ˆ 6 the mean-®eld value is exactly ~̧̧ ˆ 1

2
. For mean ®eld,

percolation interactions and long-range correlations can be neglected and the
chemical paths behave like random walks with ~̧̧ ˆ 1

2
. A value of ~̧̧ less than 1

indicates that the chemical paths are winding and have a fractal nature similar to
that of the Koch curve [24] or of self-avoiding walks. Most numerical simulations
[57, 175±179, 180, 186] give ~̧̧ º 0:88 < 1. This is in disagreement with the numerical
results of Edwards and Kerstein [187], who ®nd that ¸ º 1 for two-dimensional
percolation clusters. Since S ¹ Rdf and d ·SS=dl ˆ ·GG, it follows that

·SS…l† ¹ l ~̧̧df ² ldl …3:21†
and

·GG…l† ¹ l ~̧̧df ¡1 ¹ ldl ¡1: …3:22†

The exponent dl is the chemical-space analogue of the fractal dimension exponent df .
Note the dl is not a new exponent, but is related to ~̧̧ by dl ˆ ~̧̧df .

In the Pythagorean R-metric S…R† scales as [141]

·SS…R† ¹ RdP1 f …R=¹† ¹ Rd¹¡ =¸ f …x†; …3:23†

where x ² R=¹, and

f …x† ¹
const …x ¾ 1†;

x¡ =¸ …x ½ 1†:

(

…3:24†

From f …x ½ 1† ¹ x¡ =¸ , it follows, using (3.23), that ·SS…R† ¹ Rd¡ =¸ (for R ½ ¹†,
thus recovering df ˆ d ¡  =¸.

In analogy with the above, a scaling relation can be written for the l-metric:

·SS…l† ¹ l ~̧̧d¹
¡ ~̧̧=¸
l g…l=¹l†: …3:25†

Here ¹l is the chemical correlation length [57], i.e. the correlation length as measured
in the chemical metric …¹l 5 ¹†. Since for y ² l=¹l ¾ 1, ·SS ¹ ld , and for y ½ 1, ·SS is
independent of ¹l, we have

g…y† ¹
y¡ ~̧̧d‡d …y ¾ 1†;

y¡ ~̧̧=¸ …y ½ 1†:

(
…3:26†

This is in accordance with (3.21), that dl ˆ ~̧̧…d ¡  =¸† ˆ ~̧̧df .
The conditional probability density P…rjl† for the geometric distance r corre-

sponding to a given chemical distance l has been studied recently [109]. In analogy
with the theory of SAWs [10, 110], it was suggested [109] that

P…rjl† ˆ Al

³
r

l ~̧̧

´~gg

exp

µ
¡ a

³
r

l ~̧̧

´ ~̄̄¶
; …3:27†

and that ~̄̄ ˆ …1 ¡ ~̧̧†¡1. Numerical simulations for percolation clusters in d ˆ 2 are
in very good agreement with (3.27), with ~gg ˆ 2:5 § 0:3, ~̧̧ ˆ 0:88 § 0:02 (see ®gure
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13). The distribution P…rjl† is useful for studying the probability distributions of
random walks on fractals, as, for example, in the derivation of P…r; t† of random
walks on SAWs in section 2.4. P…r; t† for percolation clusters will be discussed in the
next section.

Dynamical properties such as conductivity and di� usion can also be expressed in
terms of the chemical distance. The chemical-di� usion exponent d l

w characterizes the
average chemical distance traversed in t steps by a random walk on the in®nite
cluster [57]:

ld
l
w ¹ t: …3:28†

Using R ¹ l ~̧̧, it follows that

d l
w ˆ ~̧̧dw: …3:29†

Similarly, the fracton dimension can be expressed as

ds ˆ 2dl

d l
w

ˆ 2df

dw
: …3:30†

For the case of loopless aggregates or aggregates for which loops can be neglected, it
can be shown (for details see [52] and section 4.1) that

dw ˆ df 1 ‡ 1

dl

³ ´
; d l

w ˆ dl ‡ 1; ds ˆ 2dl

dl ‡ 1
: …3:31†

Thus, in this case, the dynamics is entirely controlled by dl and df . In particular, these
results are valid for percolation clusters in d 5 6, for which loops can be neglected, in
this case, dl ˆ 2, and hence d l

w ˆ 3 and ds ˆ 4
3
, as expected [45].

The dynamical exponents for the percolation system in d < 6 cannot be
calculated using (3.31), since loops are relevant for all length scales. However, one
can use (3.31) to obtain [183] bounds for percolation. In this case, the resistance
exponent is bounded by

S. Havlin and D. Ben-Avraham212

Figure 13. The conditional probability density P…rjl† for the geometric distance r
corresponding to a given chemical distance l. Results for l ˆ 50 (^), 100 (*),
150 (&) and 200 (~) are shown. The solid line represents the best ®t of (3.27) to
the data.
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1

¸
4 ~±± 4

1

~̧̧
: …3:32†

The upper bound is the resistance exponent of the shortest path between sites
separated by a distance R (see section 4.1). The actual resistance is lower because
of the e� ect of loops. The lower bound is the exponent for singly connected (red)
bonds [150, 176], which have a lower resistance since we neglect the contribution of
blobs. These bounds were used also in the context of elasticity [189]. Combining
(2.7 b), dw ˆ df ‡ ~±± and (3.32), one obtains

df ‡ 1

¸
4 dw 4 df ‡ 1

~̧̧
…3:33†

and

2df

df ‡ 1= ~̧̧
ˆ 2dl

dl ‡ 1
4 ds 4

2df

df ‡ 1=¸
: …3:34†

The two bounds in (3.32)±(3.34) become identical for percolation systems in d 5 6,
since in this case ~̧̧ ˆ ¸ ˆ 1

2
. For percolation in d ˆ 2±4 the two bounds are estimated

from the known best values of ¸, ~̧̧, dl and df (section 3.6) and are presented in table 1.
The question of the origin of the chemical exponents dl and ~̧̧ is of great interest.

Is dl a `new’ exponent independent of the known percolation exponents … ; ¸† or not?
A Flory-type argument [183, 190, 191] relates ~̧̧ to df , but only in an approximate
fashion, providing an incomplete answer to this question. The simplest Flory
formula was ®rst derived as [183]:

~̧̧ ˆ 4

d ‡ 2
; d 4 6: …3:35 a†

This result was also obtained by Family and Coniglio [190]. A similar Flory type
formula for ~̧̧ was suggested by Roux [191]:

~̧̧ ˆ 2

d ‡ 2 ¡ df
; d 4 6: …3:35 b†

Using the Flory expression [192] for df ˆ 1
2
…d ‡ 2†, (3.35 b) reduces to (3.35 a).

However, substituting the exact values of df in (3.35 b) yields better agreement with
the measured numerical values for ~̧̧ in d ˆ 2.
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Table 1. Bounds for the transport exponents of percolation clusters from (3.32)±(3.34). The
best known values of the actual exponents are given in parentheses.

~±± dw ds

Lower Upper Lower Upper Lower Upper
d bound bound bound bound bound bound

2 0.75 1.15 127/48 3.03 1.24 1.43
(0.97) (2.87) (1.3)

3 1.14 1.36 3.64 3.86 1.30 1.37
(1.27) (3.68) (1.33)

4 1.43 1.58 4.49 4.64 1.32 1.36
(1.54) (1.33)

6 2.00 2.00 6.00 6.00 4/3 4/3
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A formula relating ~̧̧ to the known exponents …¸;  † of percolation was
conjectured by Havlin and Nossal [57]:

df ˆ 1

¸
‡ 1

~̧̧
: …3:36†

This relation was based on numerical data given at that time. Recent numerical data
presented by Grassberger [186] as well as an °-expansion near six dimensions [194]
are not consistent with (3.36). Thus the question as to whether ~̧̧ is a new
independent exponent is still open. Recent numerical estimates of ~̧̧ and dl will be
presented in section 3.6.

A quantity of interest related to ~̧̧ is the velocity in which a ®re front or an
epidemic propagates (wetting velocity). Using percolation as a model, assume that a
®re starts from an occupied percolation site and propagates by burning one chemical
shell per unit time. The velocity of the ®re is [186, 195]

¾ ˆ
dr

dt
²

dr

dl
¹ l ~̧̧¡1 ¹ … p ¡ pc†¡¸…1¡¸= ~̧̧†

: …3:37†

Since ¸…1 ¡ 1= ~̧̧† º 0:16 is very small (in d ˆ 2), it follows that the increase of ¾ upon
crossing pc is very steep. A ®re that does not propagate at all at p slightly below pc

will propagate very fast just above pc. This propagation process was proposed by
Ritzenberg and Cohen to study the spread of electrical activity in the heart [180].
Wetting velocity near the directed percolation threshold was studied by Khantha and
Yeomans [124].

3.5. Probability densities and multifractals
The probability density of random walks on fractals, P…r; t†, contains much

information about the dynamics as well as about the geometric structure of the
fractal (see, for example, section 2.4). In this section numerical data for P…r; t† and a
conjecture about its functional form are presented. We also review the related
problem of the distribution of voltage drops on percolation. This problem has
recently attracted much attention, and has been suggested to be characterized by a
multifractal histogram.

The form of P…r; t† for percolation clusters or for other fractals has been studied
by several authors [111±114] (see section 2.4). In order to study the form of P…r; t† for
d ˆ 2 percolation clusters, the scaling form (2.19) was ®rst tested. The numerical
results were found [114] to be in good agreement with (2.19), and are presented in
®gure 14. The parallel distribution in chemical space, P…l; t†, i.e. the probability
density of ®nding a random walker at a chemical distance l at time t (starting from
l ˆ 0 at t ˆ 0), was also studied. A plausible scaling form for P…l; t†, similar to the
scaling of P…r; t† in (2.19) is

P…l; t† ˆ ldl¡d

tds=2
¿

l

t1=dl
w

³ ´
: …3:38†

This form was found [114] too to be in good agreement with numerical data for two-
dimensional percolation, as seen in ®gure 15. The question about the speci®c form of

¦…x†, in (2.19), and ¿…x†, in (3.38), is of great interest. A ®t to the numerical data of
®gures 14 and 15 with ¦…x† ˆ exp …¡xu† and ¿…x† ˆ exp …¡x¾† is best achieved with
u ˆ 1:65 § 0:1 and ¾ ˆ 1:9 § 0:1.

In reference [114] a theoretical relation between u and ¾ is obtained:

S. Havlin and D. Ben-Avraham214
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Figure 14. Plot of rP…r; t† against r=t1=dw for di� erent values of r and t. The di� erent
symbols represent di� erent numbers of steps: *, t ˆ 1000; &, 1500; ~, 2000; ^,
2500. The range of r is 10 4 r 4 150. The solid line represents the best ®t to (2.19)
with ¦…x† ˆ exp …¡axu† and u ˆ 1:65 § 0:1.

Figure 15. Plot of lP…l; t† against l=td l
w for di� erent values of l and t. The di� erent symbols

represent di� erent numbers of steps: *, t ˆ 1000; &, 1500; ~, 2000; ^, 2500. The
range of l is 10 4 l 4 100. The solid line represents the best ®t to (3.38) with
¿…x† ˆ exp …¡bx¾† and ¾ ˆ 1:9 § 0:1.
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u ˆ ¾ ~̄̄=…¾ ‡ ~̄̄~̧̧†: …3:39 a†

Using the relation ~̄̄ ˆ …1 ¡ ~̧̧†¡1, one obtains

~̧̧ ˆ 1 ¡ u¡1

1 ¡ ¾¡1
: …3:39 b†

This relation is consistent with the numerical values found for u, ¾ and ~̧̧ (see section
3.6). The above numerical values for u and ¾ are in disagreement with the prediction
of Banavar and Willemson [112] and O’Shaughnessy and Procaccia [111]. They
argue that (2.20) holds (i.e. u ˆ dw ˆ 2:87) for percolation clusters in d ˆ 2; this is in
clear disagreement with the value u ˆ 1:65 § 0:1 of [114]. This value of u is slightly
higher than that obtained from (2.18): u ˆ dw=…dw ¡ 1† º 1:53. This parallels the
di� erences found for the measured and predicted values of di� usion on the
Sierpinski gasket, discussed in section 2.4.

Substituting u ˆ dw=…dw ¡ 1† into (3.39 b) yields

¾ ˆ d l
w

d l
w ¡ 1

: …3:40†

Since d l
w ˆ ~̧̧dw º 2:54 (two-dimensional percolation), we obtain ¾ ˆ 1:65, which is

signi®cantly smaller than the measured value ¾ ˆ 1:9 § 0:1.
An interesting related case is the form of P…l; t† for a random walker on a

percolation cluster generated on a Cayley tree at criticality. Simulations were
performed using the exact enumeration method, and the data are presented in
®gure 16. In this case we ®nd that ¾ ˆ 3

2
describes the data best. This is consistent

with (3.40) using the known value [57] d l
w ˆ 3. In section 4 we present other loopless

fractal structures for which (3.40) is valid. This leads us to suspect that the equations

S. Havlin and D. Ben-Avraham216

Figure 16. Plot of lP…l; t† as a function of l=t1=d l
w for di� erent values of l and t for

percolation on a Cayley tree. The di� erent symbols specify di� erent numbers of
steps: *, t ˆ 400; ^, 800; ‡, 1200; ~, 1600; &, 2000; £, 2400; !, 2800; &, 3600;
*, 4000. The solid curve represents the best ®t to (3.38) and (3.40) with
¿…x† ˆ exp …¡bx¾†, using the parameter dl ˆ 2:02 § 0:05, ds ˆ 1:35 § 0:05 and d l

w ˆ
3:0 § 0:10.
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u ˆ dw=…dw ¡ 1† and (3.40) are exact for the case of anomalous di� usion on loopless
structures, but only approximate for aggregates with loops.

A related problem that is currently very fashionable is the study of probability
densities for which the conventional scaling approach cannot describe the system.
Instead, an in®nite hierarchy of exponents is needed to characterize the moments
of the distribution. Systems with such a property are termed multifractals. The
distribution of voltages in a random resistor network [116] is a good example.
Suppose that one has a percolation cluster at criticality where each bond is of unit
resistance. On applying a voltage on two opposite sites of the cluster, a voltage drop
Vi results on bond i. The distribution of the voltage drops fVig, has a very long tail,
and is very di� erent from Gaussian (see ®gure 17). Let ¬ ˆ Vi=Vmax, where Vmax is
the largest voltage drop on a bond in the system, and let n…¬† be the distribution of
f¬g. The maximum voltage Vmax occurs on singly connected (red) bonds of the
cluster. The kth moment of ¬ is

¬k ² haki ˆ
X

¬

¬kn…¬†: …3:41 a†

De®ne the hierarchy of exponents ±k by

¬k ¹ L±k ; …3:41 b†

where L is the linear size of the system. Several of the ±k can be related to known
critical percolation exponents. For example, consider ¬0 ˆ

P
¬ n…¬† ¹ L±0 . Since

there is no voltage drop on bonds belonging to dangling ends,
P

¬ n…¬†, counts all
of the bonds belonging to the backbone. Thus ¬0 ¹ LdBB

f , and ±0 is identi®ed as

±0 ˆ dBB
f . Similarly, the moment ¬2 is proportional to the resistance of the cluster

with ±2 ˆ ~·· ‡ 2 ¡ d, and ¬4 describes the ¯uctuations in the total resistance of the
cluster, i.e. the electrical noise [196]. Also, ¬1 takes into account the red bonds only,
and accordingly ±1 ˆ 1=¸. Similar results were found also by Rammal et al. [196]
when studying the properties of resistance noise in random networks. For the case of
probability distribution functions that have a scaling property, there exists a gap
exponent ¢, such that ±k ˆ k¢ ‡ ±0 (section 2.4). In contrast, for the random
resistor network n…¬† does not scale, and no gap exponent is found. Instead, an
in®nite hierarchy of exponents describe the di� erent moments ¬k. An analogous
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Figure 17. The voltage distribution of a 130 £ 130 square-lattice random-resistor network at
the percolation threshold. (After de Arcangelis et al. [116].)
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behaviour was found in growth of di� usion-limited aggregation [117±119], in the
localization problem [197], in percolation with nonlinear resistors [198], and in
di� usion in the presence of random ®elds (H. Roman, A. Bunde and S. Havlin,
preprint). An in®nite set of exponents was ®rst suggested by Mandelbrot for the
problem of the onset of turbulence [199]. For a recent review on multifractals see
Stanley and Meakin [27].

3.6. Numerical results
Few of the numerical values of the critical exponents describing the static

(geometrical) properties of percolation clusters are known exactly. These include
all exponents in d 5 6 (mean ®eld) and  and ¸ for two-dimensional percolation. The
rest of the exponents are known chie¯y from numerical simulations, from renormal-
ization-group theory and from series expansions. A representative list of the known
values for the static critical exponents of percolation is presented in table 2.

The ®rst numerical estimates [47] for the di� usion exponents dw and ds were
obtained using short walks of the order of a few hundred steps. Later it was realized
by Havlin and Ben-Avraham [80] and by Pandey and Stau� er [81] that the di� usion
exponents do not converge for short walks, and walks much longer than 103 steps
are needed. Results for dw on large percolation clusters in d ˆ 2 and d ˆ 3 are
presented in ®gure 18. Figure 19 shows results for d 0

w (averages over all clusters) in
d ˆ 3 [81]. In both ®gures dw and d 0

w were calculated from local slopes of ln R…N†
plotted against ln N . It can be seen that the slope changes with N , and is smaller for
smaller N. An e� cient numerical method for estimating ~·· is by simulating di� usion
on the backbone. The conductivity of a percolation cluster is determined solely by
the conductivity of the backbone. The backbone is de®ned as follows. Assume that
each bond (or site) in the cluster is a resistor and that an external potential drop is

S. Havlin and D. Ben-Avraham218

Table 2. Static exponents for percolation.

d ¸ df dBB
f ~̧̧ ˆ 1=dmin

0.87 § 0.02 [57]
1.62 § 0.02 [202] 0.883 § 0.003 [186]

2 4
3

91
48 1.61 § 0.01 0.870 § 0.015d

25/16c [193] 16/17c [193]

3 0.88 § 0.02 [181] 2.51 § 0.02 [181] 1.74 § 0.04 [202] 0.75 [175]
0.725 § 0.015 [181]

0.72 § 0.03 [181] 3.05 § 0.05 [181]
0.64 § 0.02 [217] 3.12 § 0.02 [204] 0.68 § 0.05 [177]

4
0.62a [204, 205] 3.21 § 0.07 [167]

1.9 § 0.2 [177]
0.62 § 0.02 [181]

0.67±0.68b [206] 3.09a [204, 205]

0.51 § 0.05 [217]
5 0.57b [206]

3.69 § 0.02 [217]
1.93 § 0.16 [177] 0.59 § 0.05 [177]

0.56a [204, 205]
3.54a [204, 205]

6 1
2 4 2 1

2

a From °-expansion.
b From series expansion.
c From conformal invariance.
d From D. Laidlaw, G. Mackay and N. Jan (preprint, 1987) .
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applied at two ends of the cluster. The backbone is the subset of the cluster
consisting of all bonds (or sites) through which the current ¯ows (see ®gure 20).
The backbone is thus the structure left when all `dangling’ ends are eliminated from
the cluster. Dangling ends are those parts of the cluster that can be disconnected
from the cluster by cutting one bond only. The dangling ends do not contribute to
the conductivity, since the current does not ¯ow through them. From dw ˆ df ‡ ~±±
and (2.7 a), it follows that dBB

w ˆ dBB
f ‡ ~±±, where dBB

f and dBB
w are the fractal
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Figure 18. Graph of dw from the slope of the curve ln N against ln R…N†. The squares
represent the data for di� usion on percolation on a square lattice, and the triangles
data for a triangular lattice.

Figure 19. Plot of 1=d 0
w against time t on a logarithmic time scale. The linear dimension L

of the lattice is 180 (*) and 60 (‡). The inset shows the variation of d 0
w near t ˆ 106

with system size L. (After Pandey and Stau� er [81].)
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dimension and the di� usion exponent of the backbone. The advantage of studying
di� usion on the backbone is that it eliminates the need to simulate di� usion on the
dangling ends, which is irrelevant to the conductivity, but very time-consuming.
Indeed, numerical studies of di� usion on the backbone yield [82] accurate results for
~±± (or ~··) for percolation. Numerical estimates of dw, as well as more recent numerical
values obtained by Majid et al. [83], Bug et al. [200] and others, are presented in
table 3. This table also includes numerical estimates for the conductivity exponent ~··
(which is related to dw by dw ˆ 2 ‡ ~·· ¡  =¸), and for ds, dBB

w (the anomalous
exponent for di� usion on the backbone) and d l

w. The numerical estimates of ds in
d ˆ 2 are inconsistent with the AO conjecture. See, however, the discussion in
section 2.3.

The resistance exponent ± ² ~±±¸ ˆ · ‡ …2 ¡ d†¸ was calculated by Harris and
Lubensky [215] and by Wang and Lubensky [216] using a renormalization-group

°-expansion …° ˆ 6 ¡ d† up to second order in °:

± ˆ 1 ‡ °

42
‡ 4°2

2987
‡ O…°3†:

This result yields ˆ 1:167 for d ˆ 2 and ± ˆ 1:083 for d ˆ 3, compared with ± ˆ 1:29
…d ˆ 2† and ± ˆ 1:12 …d ˆ 3† obtained by numerical simulations. It is interesting to
note that real-space renormalization-group results of Bernasconi [201] yield · ˆ
1:33 § 0:02 for d ˆ 2 and · ˆ 2:14 § 0:02 for d ˆ 3, in good agreement with the
numerical estimates.

3.7. Continuum percolation
Recently, Halperin, Feng and Sen [153] have studied the transport properties

near the percolation threshold of a class of `Swiss-cheese’ or random-void continuum
models [162]. These models consist of uniform media in which spherical holes are
randomly placed. The static percolation exponents, such as ¸ and  , for these
continuum models have been con®rmed by simulations to be the same as for
ordinary lattice percolation [154, 209]. In contrast, Halperin et al. [153] found that
the electrical conductivity and the elastic-constant exponents are non-universal , and
in continuum percolation they can be quite di� erent from those in discrete-lattice

S. Havlin and D. Ben-Avraham220

Figure 20. Schematic plot of the backbone of a percolation cluster. The backbone consists
of the solid lines, and the dashed lines represent the dangling ends. The voltage drop
is applied at the two points represented by the full circles.
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percolation systems. These results have been obtained by mapping [154] the
continuum system onto random percolation networks with a distribution of bond
conductivities f¼g, (or elasticities)

P…¼† ¹ ¼¡¬; ¬ < 1; 0 < ¼ 4 1: …3:42†

For the random-void model the mapping is achieved with ¬ ˆ ¡1 in d ˆ 2, and
¬ ˆ 1

3
in d ˆ 3, and in general ¬ ˆ …2d ¡ 5†=…2d ¡ 3†.

Discrete percolation systems with a power-law distribution of conductivities as in
(3.42) have been studied by Kogut and Straley [210], Ben-Mizrahi and Bergman
[211], Straley [212] and Sen et al. [155]. In the original work of Kogut and Straley
[210], they employed an e� ective-medium theory on a Cayley-tree model. They
suggested that the conductivity exponent depends on ¬, and ·…¬† ˆ · ‡ ¬=…1 ¡ ¬†
for ¬ > 0. Here · is the standard conductivity exponent for percolation systems with
constant bond conductivities. Ben-Mizrahi and Bergman [211], using an approx-
imate renormalization-group method, found ·…¬† ˆ A· ‡ B¬=…1 ¡ ¬† for ¬ > 0,
with A and B constants close to unity. Straley [212], using the `nodes±links±blobs’
model for percolation, concluded that ·…¬† ˆ max …·; 1 ‡ …d ¡ 2†¸ ‡ ¬=…1 ¡ ¬††.
Halperin et al. [153] presented arguments that the predictions of [210] and [212]
yield upper and lower bounds on ·…¬† respectively, i.e.

1 ‡ …d ¡ 2†¸ ‡ ¬

1 ¡ ¬
4 ·…¬† 4 · ‡ ¬

1 ¡ ¬
; 0 4 ¬ 4 1: …3:43†

The results obtained for the conductivity of continuum percolation using an

°-expansion [156] show a more complicated crossover behaviour. For a detailed
discussion see Lubensky and Tremblay [156] and the recent review on the

°-expansion results by Harris [213]. Benguigui [214] and C. J. Lobb and M. G.
Forrester (preprint, 1987), presented experimental results in d ˆ 2 that are in good
agreement with Halperin et al. [153].

In a recent work, Bunde et al. [158] studied how the di� usion exponents change
on the incipient in®nite percolation cluster (in d ˆ 2) when the transition rates
between nearest-neighbour sites, fwg, are chosen from a power-law distribution

P…w† ¹ w¡¬; ¬ < 1; w 4 1; …3:44†

analogous to (3.42). For uniform transition rates (w ˆ 1, corresponding to ¬ ˆ ¡1)
it has been shown that dw is related to · via dw ˆ 2 ‡ …· ¡  †=¸ as in (3.18). Using
similar arguments, it can be shown that (3.18) also holds for the general case of
random transition rates, where dw and · are replaced by dw…¬† and ·…¬†. Thus from
(3.43) one obtains bounds on dw…¬†:

df ‡ 1

…1 ¡ ¬†¸
4 dw…¬† 4 dw ‡ ¬

…1 ¡ ¬†¸
; 0 4 ¬ 4 1; …3:45†

where df ˆ d ¡  =¸ is the fractal dimension of the incipient in®nite percolation
cluster. Since the geometrical properties of the cluster are not a� ected by the
conductivity assigned to the bonds, it follows that the chemical-di� usion exponent
d l

w…¬† is related to dw…¬† through

d l
w…¬†

dw…¬†
ˆ df

df

ˆ ~̧̧ ² 1

dmin
: …3:46†

This yields

S. Havlin and D. Ben-Avraham222
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dl ‡ 1

…1 ¡ ¬†¸l
4 d l

w 4 d l
w ‡ ¬

…1 ¡ ¬†¸l
; …3:47†

where ¸l ˆ ¸df=dl is the `chemical correlation exponent’, characterizing the scaling of
the correlation length in chemical space ¹l ¹ … p ¡ pc†¡¸l (see reference [57]).

Relations (3.45) and (3.47) are easily accessible to a direct numerical test. To this
purpose the exact-enumeration method was applied (see section A.2 of the appendix).

The results for hr2…t†i and hl…t†i are shown [158] in ®gures 21 and 22 for various
values of ¬. From the asymptotic slopes, one obtains the di� usion exponents dw…¬†
and d l

w…¬†, which are presented in table 4. The results strongly support the
inequalities (3.45) and (3.47), and thus also support the scaling arguments leading
to these relations. Note that for small ¬, dw…¬† is closer to the upper bound, while for
large ¬, dw…¬† is closer to the lower bound. Very recently, simulations of di� usion in
d ˆ 2 and d ˆ 3 continuum percolation systems have been performed (J. Petersen,
H. E. Roman, A. Bunde and W. Dieterich, 1987, preprint). The results support the
non-universality and are in good argreement with (3.43) and (3.45); but if the step-
length of the walker is ®nite a new universality class is found, even for d ˆ 2. For a

Di� usion in disordered media 223

Figure 21. Plot of hr2…t†i against t for various ¬. For the calculations, clusters were
generated up to 150 shells (typically 10 000 sites) using the Leath algorithm [184]. To
determine hr2…t†i, exact numeration for the `blind ants’ was used (section A.2 of the
appendix). Each value of ¬ represents an average over 400 con®gurations.

Figure 22. Plot of hl…t†i against t for various ¬, from the same data as in ®gure 21.
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recent review on transport properties of percolation (Swiss-cheese model) see Feng
et al. [160].

Machta et al. [157] studied transport on a hierarchical resistor network model.
This model is very useful for describing the transport properties of the backbone of
percolation clusters [116]. The conductivities f¼g were chosen from a power-law
distribution (3.42). Machta et al. applied a renormalization-group transformation
using an ansatz about the form of the distribution of resistances. Their conclusion
for the conductivity exponent was that

·…¬† ˆ
· · > …d ¡ 2†¸ ‡ 1

1 ¡ ¬

³ ´
;

…d ¡ 2†¸ ‡
1

1 ¡ ¬
· < …d ¡ 2†¸ ‡

1

1 ¡ ¬

³ ´
:

8
>>><

>>>:
…3:48†

Weiss and Havlin [159] presented a rigorous proof of (3.48) for the hierarchical
resistor network by solving the recursion relation for the distribution of the
conductivities in a real-space renormalization-group analysis. As noted above, the
results for dw…¬† for percolation are closer to the upper bound for small ¬, while they
are closer to the lower bound for large ¬. This can be partly understood from the
result (3.48) and also from recent ®ndings by Lubensky and Tremblay [156]. For an
earlier study of one-dimensional continuum percolation see Domb [163].

4. Di� usion on loopless structures
The study of loopless aggregates is considerably simpler than the general case of

aggregates with loops. Indeed, several models could be solved exactly because of the
simpli®cation and lack of correlations once loops are neglected. A well known
example is percolation on the Cayley tree (mean-®eld percolation). There exist many
physical realizations and models of aggregates in which loops can be neglected. The
simplest is perhaps the linear polymer modelled by self-avoiding walks [71]. Other
examples are branches polymers modelled by lattice animals [218, 219], chemically
linear branched polymers [220], aggregates such as those modelled by DLA [63, 221],
and growth models for trees [87, 222]. It has been realized that all these random
structures are of a fractal nature and possess anomalous transport properties. In this
chapter we review the physics of transport phenomena in loopless structures. One of
the most satisfying results arising from the simplicity of loopless aggregates is a

S. Havlin and D. Ben-Avraham224

Table 4. The diffusion exponents dw and d l
w extracted from ®gures 21 and 22 for ®ve values of

¬, compared with the upper and lower bounds (3.45).

Upper-bound Lower-bound

¬ dw…¬† dw…¬† dw…¬† d l
w…¬†

¡1 2.85 § 0.04 2.87 2.65 2.47 § 0.04

0 2.90 § 0.05 2.87 2.65 2.50 § 0.05
1
2 3.60 § 0.10 3.62 3.40 3.13 § 0.06
2
3 4.13 § 0.10 4.37 4.15 3.15 § 0.08
3
4 4.80 § 0.20 5.12 4.90 4.00 § 0.15
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general exact relation between transport (dynamical) exponents (dw, d l
w and ds) and

structural (static) exponents (dl and df ). For the general case of aggregates with
loops, such a relation has not yet been found (see section 3), in spite of the large
e� ort extended.

4.1. Relation between transport exponents and structural exponents
In the following we present a scaling argument [52] that relates the di� usion

exponents on loopless fractals to the structural exponents. The resistance exponent
of a cluster is de®ned by the scaling of the resistance %…R† between two sites
separated by a distance R:

%…R† ¹ R
~±± : …4:1†

Since loops can be neglected, the shortest (chemical) path is the only path connecting
any two sites. Thus, the resistance scales as the chemical distance l between these
points

% ¹ l ¹ S1=dl ¹ Rdf=dl ˆ Rdmin ; …4:2†

from which it follows that
~±± ˆ df=dl ˆ dmin: …4:3†

For calculating the di� usion exponent, we use the Einstein relation (2.7 a),
dw ˆ df ‡ ~±± and

dw ˆ df 1 ‡ 1

dl

³ ´
: …4:4†

Thus both transport exponents ~±± and dw are determined by the structural exponents
df and dl.

The chemical-distance di� usion exponent d l
w ˆ ~̧̧dw is

d l
w ˆ dl ‡ 1; …4:5†

and the fracton dimensionality ds ˆ 2df=dw ˆ 2dl=d l
w is

ds ˆ 2dl

dl ‡ 1
: …4:6†

Note that both d l
w and ds depend only on dl , and not on df .

The number of growing sites in the di� usion front G…l† on a loopless fractal can
be calculated using the Rammal±Toulouse equation (2.11), dS=dt ¹ G=S. Substitut-
ing for the number of distinct sites S ¹ tds=2 ¹ tdl =d l

w , we ®nd that the front of the
walk …i.e. the set of growth sites G…l†† on a fractal scales as

G…l† ¹ ldl ¡1:

That is, the front of di� usion is a spherical cut of the fractal in the chemical-distance
space (not in the Pythagorean space; see also the discussions in references [95, 96]). It
is in this sense that the chemical distance is a natural length parameter for the study
of di� usion. In contrast, using the R-metric (Pythagorean space), the front of
di� usion is not a simple spherical cut, but rather a complex fractal structure (see
the discussion following (2.11)).

4.2. Di� usion on branched polymers modelled by lattice animals (LA)
The structural properties of large branched polymers in a dilute solution have

long been of interest. Lattice animals have been found to be a useful model for such
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polymers. Zimm and Stockmayer [218] found the fractal dimension for lattice

animals generated on a Cayley tree, df ˆ 4. This was later recognized [219] to be

exact for spatial dimensions d above dc ˆ 8. Today, the exact results for three [223]

and four [224] dimensions, df ˆ 2…d ˆ 3† and df ˆ 12
5

…d ˆ 4† are known. These

results characterize spatial properties of the structure. However, many physical

properties, such as transport and elasticity, strongly depend on the intrinsic

topological structure of the aggregate. For this reason intrinsic topological exponents

such as dl and ~̧̧ are of interest. By using two methods to generate ensembles of

clusters, the series-expansion method [225] and the enrichment method [226], the

values of dl, ~̧̧ and df were estimated [52] for lattice animals in d ˆ 2, 3 and

4 dimensions. The numerical values of the di� erent exponents are given in table 5.

In ®gure 23 a comparison of dl for LA with dl for percolation clusters is presented.

A Flory-type theory was derived [183] for ~̧̧ for LA,

~̧̧ ˆ 5

d ‡ 2
; …4:7†

S. Havlin and D. Ben-Avraham226

Table 5. Summary of the values for the different exponents of LA discussed in the text.

d df dl dw
~±± ˆ df=dl ds=2 ˆ df=dw

1 1 1 2 1 1
2

2.71 § 0.10b

2
1.56 [249]

1.33 § 0.02 [52] 2.78 § 0.08 [52] 1.17 § 0.05c 0.56 § 0.03d

1.55 § 0.05 [226]
2.6 § 0.3 [51]

3.36 § 0.10b

3 2a [223] 1.47 § 0.04 [52] 3.37 § 0.10 [50] 1.36 § 0.04c 0.59 § 0.02d

3.4 § 0.4 [51]

4 2.4a [224] 1.61 § 0.06 [52] 3.89 § 0.06b 1.49 § 0.05c 0.62 § 0.01d

8 4a [218] 2 [52] 6b 2c 2
3

d

a Exact result.
b From (4.4).
c From (4.3).
d From (4.6).

Figure 23. Comparison of the results for dl of lattice animals with the results for dl of
percolation clusters. (After reference [52].)
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yielding d ˆ 3 as the lower critical dimension and d ˆ 8 as the upper critical
dimension. However, (4.7) has little success in predicting the numerical values for ~̧̧.

Numerical simulations of di� usion on lattice animals were performed by Wilke
et al. [51] and Havlin et al. [52]. In ®gure 24 we present the results by Havlin et al.,
which were obtained by using the exact enumeration method (see section A.2 of the
appendix). These results are within the error bars of Wilke et al., obtained by Monte
Carlo simulations. From the slopes in ®gure 24 one ®nds dw ˆ 2:78 § 0:08 …d ˆ 2†
and dw ˆ 3:37 § 0:10 …d ˆ 3†. This is to be compared with dw ˆ 2:6 § 0:3 …d ˆ 2†
and dw ˆ 3:4 § 0:4 …d ˆ 3† found in reference [51]. Since it is well established [219]
that for lattice animals loops can be neglected, it is expected that (4.3)±(4.6) are valid.
In table 5 we present the values for dw obtained using these equations. Note the good
agreement between the values of dw obtained from the prediction of (4.4) and from
numerical simulations. Wilke et al. [51] suggested a generalization of the scaling
theory for di� usion on percolation of section 3.3, which also includes lattice animals:

hR2i ¹ R2
s

t

Sdw=df
; … p ¡ pc†S¼

³ ´
: …4:8†

Here ¼ ˆ 1= ¯ ˆ …1 ‡ 1=¯†=d¸. Equation (4.8) is the percolation analogue of the
dynamical scaling [227].

4.3. Di� usion on DLA clusters
The di� usion-limited-aggregatio n (DLA) model of colloids and dendritic growth

was introduced by Witten and Sander [63]. In this model a seed particle is ®xed at the
origin and particles are released one after the other from a circle enclosing the
cluster. Each particle moves in a random-walk fashion until it reaches a neighbour-
ing site of the aggregate and becomes part of the growing cluster. It is accepted that
the cluster formed is a fractal object having a self-similarity problem in all length
scales. The fractal dimensions of these clusters [228, 229] and df ˆ 1:68 § 0:05 in
d ˆ 2 and df ˆ 2:5 § 0:06 in d ˆ 3. For recent reviews see references [8, 11, 230].
There is a striking resemblance between a simulated DLA (®gure 25) and the fractal

Di� usion in disordered media 227

Figure 24. The mean-square displacement hR2…t†i for random walks on LA. The slopes
yield dw ˆ 2:78 § 0:08 …d ˆ 2† and 3:37 § 0:10 …d ˆ 3†.
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structure of some real physical systems, such as sputter-deposited thin ®lms of
NbGe2 [231]. Other experimental realizations of DLA have been found in aggrega-
tion of copper on the cathode of an electrolyte [232], in the electrostatic analogue of
a di� using ®eld [233, 234] and in viscous ®ngers in hydrodynamics [30, 235]. It can be
seen from ®gure 25 that large loops are rare in the structure, and for this reason it is
in general accepted that loops can be neglected.

It has been found numerically by Meakin et al. [84] that, in contrast with other
aggregates such as LA, cluster±cluster aggregation (CCA) [236, 237] and percolation
clusters, the DLA has the peculiar property that

dl=df ˆ ~̧̧ ˆ 1 for d ˆ 2; 3; 4: …4:9†

In LA, CCA and percolation clusters, ~̧̧ ˆ 1 in d ˆ 1, and ~̧̧ ! 1
2

when d approaches
the critical dimension (see ®gure 26 and table 6).

The result ~̧̧ ˆ 1 …df ˆ df† for DLA has striking implications. First, it provides
numerical support to the idea that there is no upper critical dimension for DLA [63,

S. Havlin and D. Ben-Avraham228

Figure 25. A typical DLA cluster.

Figure 26. Dependence of 1= ~̧̧ on the dimension of space d. The data on lattice animals and
percolation clusters are from references [52, 57, 179]. The data on DLA and CCA are
from [84]. Note that 1= ~̧̧ converges to the value of 2 for all models above the critical
dimension dc for all of the models. The only exception is DLA, for which ~̧̧ ˆ 1,
within the limits of accuracy, even up to d ˆ 4. This suggests that there is no upper
critical dimension for DLA.
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238]. This follows from the fact that ~̧̧ does not approach the mean-®eld value ~̧̧ ˆ 1
2

as d increases. Secondly, it provides predictions for the di� usion on DLA clusters. It
has been shown earlier [52] that if loops are irrelevant then (4.4) and (4.6) are valid. If
dl ˆ df then, for DLA, in all diemsnions d, we have

dw ˆ df ‡ 1;

ds ˆ 2df =…df ‡ 1†:

)
…4:10†

Note also that in this case dw and ds depend on df alone.
A direct test of (4.10) is provided by extensive simulations of di� usion performed

by Meakin and Stanley [221] on DLA clusters. They ®nd

dw ˆ
2:56 § 0:10 …d ˆ 2†;
3:33 § 0:25 …d ˆ 3†;

»
…4:11†

and

ds ˆ
1:2 § 0:1 …d ˆ 2†;
1:3 § 0:1 …d ˆ 3†;

»
…4:12†

which is in good agreement with (4.10).

4.4. Di� usion on comb-like structures
Although there has been considerable interest in the problem of anomalous

di� usion on fractal structures, most results are known only from numerical
simulations or scaling theories. The simplest model that yields non-trivial results
and can still be solved rigorously [239]±[242] for P…r; t†, is di� usion on comb-like
structures such as in ®gures 27 and 28. In spite of their apparent simplicity, comb-
like structures are reasonable models for disordered media. The delay of a random
walker usually caused by dangling ends and bottlenecks is modelled by the time
spent on the teeth of the comb, and the transport along the backbone is non-trivial,
and even anomalous.

Di� usion in disordered media 229

Table 6. Summary of the result for DLA and CCA. After [84].

DLA CCA

d dmin ˆ 1= ~̧̧ dl dmin ˆ 1= ~̧̧ dl

2 1.0 § 0.02 1.69 § 0.05 1.15 § 0.04 1.22 § 0.02
3 1.02 § 0.03 2.3 § 0.2 1.25 § 0.05 1.42 § 0.02
4 1.00 § 0.04 3.3 § 0.2 1.35 § 0.05 1.55 § 0.05

Figure 27. Two-dimensional comb with in®nitely long teeth along the y-direction.
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In the following we present the case of combs with an in®nite length of the teeth
[239]. A general discussion of comb-like structures with di� erent distributions of
teeth lengths is presented in sections 5 and 6. Consider the comb in ®gure 27. It is
expected that a random walker will have di� erent properties in the horizontal and
vertical directions. Since the random walk consists of a series of steps in the y-
direction followed by a series of steps in the x-direction, and so forth, the motion
along the x-axis can be regarded as a discrete analogue of a continuous-time random
walk (CTRW) [14, 55]. The corresponding distribution of waiting times was shown
[239] to be Á…t† ¹ t¡1=2. It follows from the general theory of continuous-time
random walks [14, 55, 239, 243, 244] that anomalous di� usion occurs along the
backbone, with a mean-square displacement

hx2i ¹ t2=dw ; dw ˆ 4: …4:13†

The number of distinct sites visited increases as

hs…t†i ¹ tds=2: …4:14†

The probability to return to the origin scales as

P0…t† ¹ t¡ds=2; ds=2 ˆ 3
4: …4:15†

The anomalous di� usion found along the x-axis is due to the average in®nite sojourn
of the walker on the ®ngers of the comb. It should be noted that the expected number
of distinct sites visited along the x-axis scales as [239]

hSx…t†i ¹ t1=4: …4:16†

The probability density of a walker to be in site …x; y† at time t was shown to be [245]

P…x; y; t† ˆ A

t3=4
exp

µ
¡ a

³
x

t1=4

´3=4

¡ by2

t

¶
: …4:17†

For the three-dimensional comb of ®gure 28 the results are [239]

hx2i ¹ t1=4; h y2i ¹ t1=2; hz2i ¹ t; …4:18†
and [245]

P…x; y; z; t† ˆ A

t7=8
exp

µ
¡ a

³
x

t1=8

´8=7

¡ b

³
y

t1=4

´4=3

¡ cz2

t

¶
: …4:19†

We emphasize that the results of (4.13)±(4.19) are exact asymptotically for t ! 1.
In the general case of CTRW with a waiting-time distribution Á…t† ¹ t¡…1‡®†,

0 < ® < 1, anomalous di� usion hx2i ¹ t2=dw with dw ˆ 2=® takes place [243, 244]. In
this case the probability density P…x; t† is of the form [245]

S. Havlin and D. Ben-Avraham230

Figure 28. Three-dimensional comb with in®nitely long teeth along the y- and z-directions.
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P…x; t† ˆ
A

tds=2
exp

µ
¡ a

³
x

t1=dw

´dw=…dw¡1†¶
: …4:20†

One can put the results of (4.14) and (4.16) in the common notation used in the
literature. The anisotropy of the comb models has to be taken into account. For
example, for the comb of ®gure 27 the di� usion exponent along the x-direction is
dx

w ˆ 4, and along the y-direction it is dy
w ˆ 2. The fracton dimension ds, de®ned in

(4.14), must also be decomposed into two components. Thus from scaling

hS…t†i ˆ hSx…t†ihSy…t†i ² tdx
s =2tdy

s =2; …4:21†

from which it follows that

ds

2
ˆ dx

s

2
‡ dy

s

2
ˆ dx

f

dx
w

‡
dy

f

dy
w

ˆ 1
4

‡ 1
2

ˆ 3
4
: …4:22†

Here dx
f ˆ dy

f ˆ 1 are the fractal dimensions of the backbone and the teeth of the
comb respectively. As can be seen from (4.17), (4.19) and (4.20), the density
distribution is not Gaussian, which is consistent with the form suggested in
sections 2.4 and 3.5. It is also di� erent from forms of P…r; t† suggested by Banavar
and Willemson [112], Ohtsuki and Keyes [246] and O’Shaughnessy and
Procaccia [111].

A more interesting case is the family of one-dimensional combs for which the
teeth length l follow a power-law distribution

P…l† ¹ l¡…1‡®†: …4:23†

For this case the CTRW model is not exact, since each tooth has a di� erent length. A
self-consistent scaling approach [291] that takes the memory into account yields (see
section 5.5)

dw ˆ 4=…1 ‡ ®†; …4:24†

ds ˆ 1
4
…3 ¡ ®†: …4:25†

Note that the case ® ˆ 0 represents a comb with in®nitely long teeth, and (4.24) and
(4.25) reduce to (4.13) and (4.15). The case ® ˆ 1 is equivalent to a comb with teeth
of ®nite length, and its transport properties are regular.

In deriving (4.4)±(4.6), we calculated the resistance exponent ~±± from the scaling of
the resistance between two sites on the substrate. In general, ~±± should be calculated
from the scaling of the resistance between two hyperplanes cutting the substrate. For
®nitely rami®ed fractals, such as those studied in this section there is no di� erence
between the resistance measured between two sites or between two hyperplanes,
justifying our approach (see also references [69, 77, 78]). The case of di� usion on
in®nitely rami®ed loopless structures was studied by Dhar and Ramaswamy [87] and
Havlin et al. [86, 222, 247, 248]. These two groups used di� erent approaches, and
disagree in their results. In order to clarify this problem, more intensive theoretical
and numerical studies have to be done.

5. Di� usion on random and hierarchical structures
The general problem of di� usion in a disordered medium can be described by a

master equation for the probability distribution of a random walker on a lattice. The
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transition rates between neighbouring sites are random, and their distribution is
determined by the speci®c model studied. In particular, one-dimensional systems

have been studied extensively [4, 252±257]. These systems are described by the master

equation

dP…x; t†
dt

ˆ wx;x‡1‰P…x ‡ 1; t† ¡ P…x; t†Š ‡ wx;x¡1‰P…x ¡ 1; t† ¡ P…x; t†Š; …5:1†

where P…x; t† is the probability for the walker to be at site x at time t, and wx;x§1 are

the transition rates from site x to x § 1. There is a distinction between the cases [4] of

barriers and of wells. The case of barriers is de®ned by wx;x‡1 ˆ wx‡1;x (and in
general wx;x‡1 6ˆ wx;x¡1), whereas wells are de®ned by wx;x‡1 ˆ wx;x¡1 (and in general

wx;x‡1 6ˆ wx‡1;x). As can be seen from ®gure 29, the above de®nitions do indeed

correspond respectively to the cases of a particle hopping across barriers or out of

wells. Recently there has been growing interest in the problem of a power-law

distribution of transition rates because of its relevance to various physical systems,

such as the following.

(i) The temperature dependence of the dynamical conductivity exponent

observed in the one-dimensional superionic conductor hollandite can be
explained by a model with a power-law distribution of transition rates [37].

(ii) Continuum random systems such as the Swiss-cheese model can be mapped

[153] onto random percolation networks with a power-law distribution of
bond conductivities. Employing the partly `one-dimensional’ nature of the

backbone of the percolation in®nite cluster, bounds on the transport
exponents have been derived [153, 155, 158, 160, 210, 212, 258]. (For a more

detailed discussion see section 3.7.)

(iii) The problem of biased di� usion in random structures such as the random
comb or the percolation system can be modelled [252, 259, 260] by biased

di� usion in a linear chain with a power-law distribution of transition rates. In
this case, the power-law exponent depends on the bias ®eld, and a dynamical

phase transtion occurs in which the drift velocity changes from non-zero to

zero upon crossing a critical value of the bias ®eld.

S. Havlin and D. Ben-Avraham232

Figure 29. Random barriers (a) and wells (b) in one dimension. For barriers, the transition
probabilities for hopping across a barrier to the right or to the left are equal:
wx¡1;x ˆ wx;x¡1. For wells, the transition probabilities for getting out of a well (to
either side) are equal: wx;x¡1 ˆ xx;x‡1.
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(iv) Anomalous relaxation in spin glasses can be interpreted in terms of stochastic
motion (in phase space) with a power-law distribution of transition rates
[261, 262].

A deterministic realization of a one-dimensional system with a power-law
distribution of transition probabilities is provided by hierarchical structures, such
as that shown in ®gure 30 (a). The hierarchical structure of ®gure 30 (a) is
constructed iteratively. The nth iteration is obtained by doubling the structure of
the …n ¡ 1†th iteraction and adding in the centre a barrier of height Rn‡1. (The ®rst
iteration is a single barrier of height R0 ˆ 1.) This structure is strongly related to the
tree structure of ®gure 30 (b). The height of each barrier between two sites is Rk¡1,
where k is their closest common ancestor level. The tree of ®gure 30 (b) is an example
of an ultrametric space. Ultrametricity is a mathematical concept that has recently
been found useful in various physical contexts. For a recent review of ultrametricity
in physics see reference [263].

In the following we review the problem of transport in one-dimensional systems
with a distribution of transition rates. We also review the generalization of the one-
dimensional problem to higher dimensions and to fractals. The techniques developed
for the solution of the transport problem in one dimension are then applied to the
problem of comb-like structures with various distributions of teeth lengths.

5.1. Transport in one-dimensiona l systems with a power-law distribution of
conductivities

The problem of transport in one-dimensional systems with a broad distribution
of conductivities has been studied in recent years by several authors (see, for
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Figure 30. (a) Hierarchical-potentials structure. The particle can hop from a cell to its
nearest-neighbour cell with transition rates that depend on the potentials. The index k
represents the cell number and n represents supercells determined by k ˆ 2n‡1. (b)
The ultrametric tree of coordination number z ˆ 3 from which the hierarchical
structure in (a) is generated.
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example, references [4, 210, 212, 256, 258]). For a power-law distribution of bond
conductivities

P…¼† d¼ ˆ …1 ¡ ¬†¼¡¬ d¼; ¬ < 1; 0 4 ¼ 4 1; …5:2†

the transport exponent ~±± and dw depend sensitively [4] on ¬:

~±± ˆ
1 …¬ 4 0†;
…1 ¡ ¬†¡1 …¬ > 0†;

(

…5:3 a†

and

dw ˆ
2 …¬ 4 0†;
2 ¡ ¬

1 ¡ ¬
…¬ > 0†:

8
<

: …5:3 b†

In the following a simple scaling theory to derive (5.3) is presented. This approach
proves to be useful for the solution of other related problems, as shown later in this
section.

Consider a one-dimensional chain of length L consisting of L bonds whose
conductivities ¼i are distributed according to (5.2). The total conductivity § is
given by

§¡1 ²
XL

iˆ1

1=¼i: …5:4†

When L ¾ 1 one can pass to the continuum limit:

§¡1 º L

…1

¼min

1

¼
P…¼† d¼ ˆ 1 ¡ ¬

¬
L…¼¡¬

min ¡ 1† ¹
L …¬ < 0†;
L ln ¼min …¬ ˆ 0†;
L¼¡¬

min …¬ > 0†:

8
><

>:
…5:5†

Here ¼min is a cut-o� corresponding to the smallest conductivity of the (®nite)
system. Equation (5.5) describes a dynamical phase transition. For ¬ < 0 transport is
normal, and for ¬ > 0 transport is anomalous. The transition, at ¬ ˆ 0, is
characterized by a logarithmic correction.

In order to estimate ¼min, we choose a random variable u …0 4 u 4 1† distributed
uniformly so that P…¼† d¼ ˆ du, i.e. u ˆ ¼¡¬‡1. The expected minimum value of u is
umin ˆ 1=L (since there are L conductivities), and thus

¼min ˆ L¡1=…1¡¬†: …5:6†

Substitution of (5.6) into (5.5) yields

% ² §¡1 ¹
L …¬ < 0†;
L ln L …¬ ˆ 0†;
L1=…1¡¬† …¬ > 0†:

8
><

>:
…5:7†

and (5.3 a) is recovered.
To derive (5.3 b), one can use the Einstein relation dw ˆ ~±± ‡ df (here df ˆ 1). An

alternative way is to start with the results for di� usion in one-dimensional random
systems, with a power-law distribution of transition rates fwig. This approach was
developed by Machta [265], Zwanzig [266] and more recently for higher-dimensional
systems by Kundu and Phillips [267]. Replacing wi ² ¼i, the problem of random
conductivities is exactly mapped to the problem of di� usion in the presence of
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random barriers. The mean-square displacement hx2…t†i is related to the number N
of distinct sites visited and to the transition rates fwig. For large t and N [265±267]

D¡1 ˆ t

hx2i
ˆ 1

N

XN

iˆ1

1

wi
: …5:8†

This equation can be interpreted as representing the average time spent by the
random walker at a site of the system in two equivalent ways. Identifying L with
hx2i1=2 ˆ N , from the approach of (5.4)±(5.6), (5.3 b) is rederived.

5.2. One-dimensional systems with a power-law distribution of potential barriers or
wells and hierarchical structures

The distinction between barriers and wells in one-dimensional systems is not
relevant for most transport properties [257, 269]. This is because a random walker
must cross all the barriers, or wells, between any two visited sites. In contrast, in
higher dimensions a random walker can get around barriers, and the distinction
between barriers and wells is important. In the following we discuss one-dimensional
systems, treating the cases of barriers and wells as equivalent. However, the
probability of returning to the origin, P0…t†, is di� erent [270] for barriers and wells
even in d ˆ 1, and is treated separately. See also recent work by J. W. Haus and
K. W. Kehr (preprint, 1987).

Consider a one-dimensional system with potential barriers or wells distributed
according to

Á…V† ˆ …®V®
0 †V¡…1‡®†; V0 4 V < 1; ® > 0; …5:9†

where V is the size of the barrier or well (it may be regarded as a potential). There
exist several possibilities of associating transition probabilities fwig with this
distribution of potentials. When the transition probability w is inversely propor-
tional to V , one obtains

P…w† ˆ Á…V†
dV

dw
¹ w¡¬; ¬ ˆ 1 ¡ ®; …5:10†

and the problem is identical with the one discussed in the previous section, with the
transport results of (5.3 a, b).

A deterministic system that has similar anomalous transport properties to the
random system discussed above is the one-dimensional lattice with potentials
distributed in a hierarchical way, shown in ®gure 30 (a). The potentials are given by

Vk ˆ Rl; R 5 1; …5:11†

where l is given by the solution of

k …mod 2l† ˆ 2l¡1; l > 0 integer: …5:12†

It can be shown that the potentials are algebraically distributed according to

Á…V† ¹ V¡…1‡ln 2= ln R†, as in (5.9). In the case that the transition rates w are inversely
proportional to V , one obtains p…w† ¹ w¡¬, with ¬ ˆ 1 ¡ ln 2= ln R. Thus, naively,
we may assume that the results of (5.3 a, b) are valid. On the other hand, this is not
obvious, because of the deterministic nature of the hierarchical structure. It is,
indeed, a surprise that the results of (5.3 a, b) are valid. This has been shown, using
renormalization-group techniques [262, 271±274]. A simple renormalization-group
approach was recently suggested [274] to calculate the di� usion exponent dw. The set
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of cells fkg is renormalized to supercells fng, with k ˆ 2n‡1 (see ®gure 30 (a)). For
these new supercells, one can write a recursion relation

1

wn

ˆ 2

wn¡1

‡ Rn; …5:13†

where

1

wn

ˆ
X2n¡1

kˆ1

1

wk
: …5:14†

Using (5.8), (5.13) and (5.14), we have

D¡1 ˆ 1

2

X·nn

nˆ0

³
R

2

´n

; …5:15†

where ·nn represents the span of the walk, hx2i1=2 ² x ¹ k, and is given by

x ˆ 2·nn‡1: …5:16†

Thus, in the limit of large x, i.e. ·nn ¾ 1,

t

hx2i
² D¡1 ˆ

…2 ¡ R†¡1 …R < 2†;
1
2
…1
2
R†·nn¡1 …R 5 2†;

(
…5:17†

and there is a dynamical phase transition [262]

dw ˆ
2 …R < 2†;

1 ‡ ln R

ln 2
…R 5 2†:

8
<

: …5:18†

This is indeed the result obtained from (5.3 b), with ¬ ˆ 1 ¡ ln 2=ln R. Numerical
results using the exact enumeration method (see section, A.2 of the appendix)
supporting (5.18) are shown in ®gure 31. When regarding the potentials as
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Figure 31. Plot of ln hx2i against ln t for the hierarchical structure of ®gure 30 (a) for
R ˆ 2:5, 3, 4. The di� usion exponent dw calculated from the slopes agrees with (5.18).
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conductivities, the resistance exponent is obtained from the equivalence between
conductivities and transition rates (section 5.1)

~±± ˆ
1 …R < 2†;
ln R

ln 2
…R 5 2†:

8
<

: …5:19†

The hierarchical structure of ®gure 30 (a) can be generalized by constructing it from
a tree (®gure 30 (b)) with coordination number z. In this case, ® of (5.9) generalizes to

® ˆ ln …z ¡ 1†= ln R. The probability of returning to the origin, P0…t†, is di� erent for
the cases of barriers and wells. A heuristic argument yields [270]

P0…t† ¹ t¡1=dw for barriers;

t¡…dw¡1†=dw for wells.

(
…5:20†

Numerical results for the hierarchical structure of ®gure 30 (a) support (5.20).
Blumen, Zumofen and Kla� er [275] studied numerically the related problem of the
distribution of the number of sites visited by a walker on hierarchical structures.

Another case of interest is when the transition probability w is given by the
Boltzmann factor

w ˆ exp …¡ V†; …5:21†

where  ˆ 1=kT . The distribution of transition rates P…w† is

P…w† ˆ Á…V† dV

dw
ˆ ®V®

0



1

w…ln w†1‡®
: …5:22†

This distribution arises naturally in the context of biased di� usion on combs (see
reference [276] and section 6.2). To calculate the di� usion properties we use (5.8):

D¡1 ˆ 1

w

½ ¾
ˆ ®V ®

0



…w0

wmin

dw

w2…ln w†1‡®
¹ w¡1

min j ln wmin j¡…1‡®†: …5:23†

In order to estimate wmin, we ®rst calculate Vmax , which represents the maximum
barrier or well in a system of linear size x. We choose a random variable u
…0 4 u 4 1† distributed uniformly such that P…V† dV ˆ du, i.e. u ˆ …V=V0†¡®. The
expected minimum value of u is umin ˆ 1=x, and thus Vmax ˆ V0x

1=® , from which it
follows that

wmin ˆ exp …¡ V0x1=®†: …5:24†

For x ! 1 we obtain from (5.23)

D¡1 ˆ t

hx2i
¹ exp … V0x1=®†; …5:25†

and the leading behaviour for the displacement x is anomalously slow, and has a
logarithmic time dependence [276]

x ¹ …ln t†®; 0 < ® < 1: …5:26†

Again, if one associates a transition rate w ˆ exp …¡ V† with the potentials of
the hierarchical model of ®gure 30 (a) then the same result as in (5.26), with

® ˆ ln 2=ln R, is obtained. This can be shown from a rigorous renormalization-
group approach [277].

Di� usion in disordered media 237

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
P
r
i
n
c
e
t
o
n
 
U
n
i
v
e
r
s
i
t
y
 
L
i
b
r
a
r
y
]
 
A
t
:
 
0
1
:
1
2
 
9
 
D
e
c
e
m
b
e
r
 
2
0
0
9



When the transition rates fwig in (5.22) are replaced by conductivities f¼ig, the
resistance of the system % ˆ

P
i ¼¡1

i scales as

% ¹ exp …L1=®†; …5:27†

where L is the size of the system.
It should be noted that a logarithmic behaviour of the displacement similar to

(5.26) was found by Sinai [278]:

x ˆ hx2i1=2 ¹ …ln t†2: …5:28†

His model consists of a linear lattice …d ˆ 1† in which a random bias ®eld Ei is
applied on each bond. When the fEig are symmetrically distributed around hEii ˆ 0
the net bias ®eld applied on a region of size x scales as E ²

Px
iˆ1 E ¹ x1=2.

To overcome the bias and exit this region, it takes a random walker a time t
of order exp …E† ¹ exp …x1=2†, and (5.28) follows. The Sinai problem is equivalent
to a system with a power-law distribution of potentials, (5.9), with ® ˆ 2. In
this case, the maximum characteristic potential barrier within a region of size x
scales as Vmax ¹ x1=2, and x ¹ …log t†2. Thus a power-law distribution of potential
barriers with ® ˆ 2 is analogous to the random-®eld Sinai model, and yields the same
results.

The density distribution P…x; t† for a random walker in the Sinai problem has
been studied recently by H. Roman, A. Bunde and S. Havlin (preprint). It was found
numerically that, while the average density distribution and consequently the
moments hxni scale with a single exponent, it requires an in®nite hierarchy of
exponents to characterize the ¯uctuations in P…x; t†. An analytical approach for the
average of P…0; t† was given by Bauchaud et al. [268]. It is interesting to note that
numerical simulations performed by Pandey [279] in the analogous d ˆ 3 random-
®eld system indicate that for long times the random walker approaches a drift
velocity, i.e. r ¹ t. A perturbation expansion for di� usion in the presence of a
random ®eld was carried out by Winter et al. [280].

The case of non-symmetrical distribution of local bias ®elds fEig was studied by
Derrida and Pomeau [281]. They considered a model where Ei is the ®eld acting on
bond i to the right and 1 ¡ Ei to the left, with the distribution of Ei

¿…Ei† ˆ c¯…Ei ¡ E† ‡ …1 ¡ c†¯‰Ei ¡ …1 ¡ E†Š: …5:29†

For 1
2 < c < E the mean displacement is [281]

hx2…t†i1=2 ¹ t¸; …5:30†

with ¸ ˆ ln ‰c=…1 ¡ c†Š= ln‰E=…1 ¡ E†Š. Note that the Sinai model [278] is the special
case when there is no global bias.

5.3. Transport in strips …n £ 1† and in d 5 2 with random barriers and wells
The results derived in sections 5.1 and 5.2 are for single one dimensional chains.

As mentioned above, they are the same for energy barriers and for potential wells. In
the case of strips …n £ 1†, i.e. n linear chains connected in parallel (®gure 32 (a)), the
transport properties for barriers are di� erent from those of wells. The reason for this
di� erence is that a random walker at site i steps to its nearest neighbours with equal
probabilities in the case of potential wells (regardless of their depths), whereas in the
case of potential barriers the probability is largest to step across the lowest barrier.
Thus, while in the wells system the walker will often be trapped by the deeper wells,
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in a system of barriers the higher barriers are systematically avoided. Note that in the
case of a single one-dimensional chain this di� erence does not exist, since the walker
cannot bypass the higher barriers. Thus, it is argued that for the same distribution of
wells and barriers, the mean-square displacement satis®es the inequality

hr2…t†ibarriers 5 hr2…t†iwells: …5:31†

Consider the case of a strip consisting of n connected parallel chains of length L, with
a power-law distribution of potentials on the horizontal bonds [277, 282]. For
simplicity, we ®rst treat the case where there is no potential associated with the
vertical bonds. If the transition rates are inversely proportional to the potential,
w ¹ 1=V , then the case of barriers is mapped to that of a strip with random bond
conductivities (see section 5.1). For this case it was found [282] that the transport
exponents in (5.3 a, b) are not universal, but depend sensitively on n. For ®nite n
there exists a critical value of ¬, ¬c ˆ 1 ¡ 1=n (a phase diagram is presented in ®gure
32 (b)). For ¬ 4 ¬c the resistance exponent and the di� usion exponent dw retain their
classical values ~±± ˆ 1 and dw ˆ 2. For ¬ > ¬c both exponents vary continuously with
n and ¬:

~±± ˆ 1

n…1 ¡ ¬†
…¬ > ¬c ˆ 1 ¡ 1=n†;

dw ˆ 1 ‡ 1

n…1 ¡ ¬† …¬ > ¬c†:

9
>>>=

>>>;
…5:32†

A recent study by Webman (1987, private communication) yields similar results. If
the vertical bonds have the same power-law distribution as the horizontal bonds,
(5.2) then (5.32) represent rigorous lower bounds. It is argued [283], however, that
(5.32) are also correct when all bonds, vertical and horizontal, follow the same
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Figure 32. (a) Strip of length L, consisting of n ˆ 3 connected linear chains. The vertical
bonds are perfect conductors while the horizontal bond conductivities are distributed
as in (5.2). (b) Phase diagram for strips as in (a). The regions of normal and
anomalous transport are shown.
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distribution law (5.2). Recent numerical simulations by H. Taitelbaum (1987,
unpublished) for n ˆ 2 support this claim.

This rich behaviour of transport-dependen t properties on the width n of the
strips, found in the case of potential barriers (or conductivities), is not found in the
case of potential wells. As noted earlier, there is a ®nite a priori probability of
entering a well regardless of its depth, and therefore the transport properties of n
parallel chains are qualitatively equal to those of a single one-dimensional chain.

The case of transition probabilities fwig, Boltzmann-distributed, w ˆ exp …¡ V†,
has been analysed [277]. The same transport laws are found for n-connected chains
and for a single chain, (5.26).

Systems of a power-law distribution of barriers and wells in d 5 2 can also be
studied using the techniques of sections 5.1 and 5.2. For the case of barriers, with
w ¹ 1=V , transport is regular [257]. This can be seen from (5.32) on taking the limit
n ! 1. For wells it has been shown [257, 284, 285] that d ˆ 2 is an upper critical
dimension. The di� usion exponent is given by [257, 284, 285]

dw ˆ 2

1 ¡ ¬
; d 5 dc ˆ 2; 0 4 ¬ < 1; …5:33†

independent of d …d 5 2†. This result is the same as that obtained [243, 250, 286±289]
for a continuous-time random walk (CTRW) with a waiting-time distribution
P…t† ¹ t¡…1‡¬†. The exponent dw of (5.3 b) and (5.33) was also derived by Machta
[285] using a real-space renormalization-group method. Numerical simulations [284]
support these results. For barriers with transition probabilities that are Boltzmann-
distributed, w ˆ exp …¡ V†, it has been shown [277] that there exists a critical value
of ®, ®c. For ® < ®c a slow logarithmic transport results, and the mean-square
displacement depends strongly on the dimension d (for all d):

r1=®¡…d¡1† ¹ ln t ® < ®c ˆ
1

2…d ¡ 1†

³ ´
: …5:34†

For ® > ®c the di� usion is regular [277], hr2i ¹ t. For d ˆ 1, ®c ! 1; that is, the
logarithmic time dependence is valid for all ®, as found earlier in (5.26). Note that
there is no upper critical dimension dc as in (5.33). In the case of wells, with
Boltzmann-distributed transition probabilities, the mean-square displacement is
given by [276]

hr2i1=2 ¹ …ln t†®=2; d 5 dc ˆ 2: …5:35†

These results for d 5 2 are obtained with a similar approach to that of sections 5.1
and 5.2. The assumption that (5.8) is valid for systems in d 5 2 is also used [267].
One also has to take into account that in d 5 2 the number N of distinct sites visited
by an ordinary random walker, which appears in (5.8), is propotional to the mean-
square displacement hr2i.

The various results for barriers and wells in d ˆ 1, strips, and for d 5 2, for the
di� erent distributions discussed in this chapter are summarized in table 7.

Other potential distributions might be of interest. For example, an exponential
distribution of wells with a Boltzmann distribution of transition probabilities has
been studied [284]. For the distribution

P…V† ˆ 1

V
exp ¡ V

·VV

³ ´
…5:36†
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there is a phase transition in the dynamics. For T > Tc ˆ ·VV di� usion is normal, and
for T < Tc the di� usion is anomalous:

dw ˆ

T ‡ Tc

T
…d ˆ 1†

2Tc

T
…d 5 2†

…T < Tc†:

8
>><

>>:
…5:37†

The transport exponents depend on the temperature T and on the dimension d of the
system.

5.4. Potential barriers and wells on fractals
The case of a power-law distribution of barriers or conductivities on fractals is

related to continuum percolation, and was discussed in section 3.7. This problem is
not completely solved. The only fractal substrates studied have been percolation
clusters and hierarchical lattices. For percolation clusters bounds have been found
for the transport exponents [153], but no exact results have been obtained. However,
for some hierarchical lattices the transport exponents are known exactly [157, 159].

The transport problem on fractals with a distribution of wells seems to be
simpler. This is due to the fact that a random walker enters a well with an equal a
priori probability, regardless of the depth of the wells. A distinction must be made
between fractals with a fracton dimensionality ds greater or less than two. For
fractals with ds < 2 di� usion is recurrent, and the number of distinct sites visited up
to time t, N…t†, scales as (cf. section 2.3)

N…t† ¹ r…t†df …ds 4 2†: …5:38†

For ds > 2 di� usion is no longer recurrent, and

N…t† ¹ r…t†dw …ds > 2†: …5:39†

Generalizing the Zwanzig [266] formalism (section 5.1), one writes for anomalous
di� usion [290]

t

rdw
º 1

N…t†
XN…t†

iˆ1

1

wi
: …5:40†

The exponent dw describes anomalous di� usion on the fractal in the absence of wells.
For a power-law distribution of wells, and a transition probability w ¹ 1=V , one
obtains

t

xdw
¹

…1

wmin

1

w
P…w† dw ¹ w¡¬

min; …5:41†

where

wmin ˆ N…t†¡1=…1¡¬†: …5:42†

As usual, the scaling of wmin is derived with the aid of a uniform distribution. Thus
the di� usion exponent is [136, 290]

dw…¬† ˆ
dw ‡

df¬

1 ¡ ¬
…ds 4 2†;

dw

1 ¡ ¬
…ds > 2†:

8
><

>:
…5:43†
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The result for ds < 2 has been veri®ed numerically on the Sierpinski gasket [136] and
on percolation clusters [290]. Note that for one-dimensional systems (5.43) reduces
to (5.3 b). Note also that for ds > 2 we recover the result obtained using a
continuous-time random-walk model [244].

5.5. Anomalous di� usion on combs and fractals
A problem related to di� usion on a lattice with a distribution of transition rates

is di� usion on combs. Consider a comb in which the length of each tooth is
distributed according to

’…L† ˆ ®L¡…1‡®†; ® > 0; L 5 1: …5:44†

This distribution leads to anomalous di� usion, whose characteristic exponents
depend on the value of ®. When the average tooth length in ®nite …® > 1† di� usion
is regular, i.e. hx2i ¹ t. Two techniques have been used [291] to calculate the dif-
fusion exponents. The ®rst approach uses a formalism involving the continuous-
time random-walk (CTRW), and the second is a self-consistent scaling theory.
The results of both analyses are in agreement, and are con®rmed by numerical
simulations.

The CTRW approach assumes a random walk without memory. That is to say,
when the random walker returns to a site that has already been visited, he can see a
tooth of a length L di� erent from that seen at the previous time. In this case the
mean-square displacement along the backbone, hx2…n†i, can be expressed as

hx2…n†i ² ¼2h j…n†i; …5:45†

where ¼2 is the variance of the displacement of a single step of the random walk
…¼2 ˆ 1 for a symmetric nearest-neighbour walk). The average is over all con®gura-
tions of lengths, and h j…b†i is the expected number of steps that are taken along the
backbone out of a total of n steps [239]. The generating function of h j…n†i with
respect to n is denoted by J…z†:

J…z† ²
X

n

h j…n†izn: …5:46†

Let Án be the probability that the interval between two successive sojourns into a
tooth at a site of the backbone is equal to n, and let hª…z†i be the corresponding
generating function. It can be shown [239] that

J…z† ˆ hª…z†i
…1 ¡ z†…1 ¡ hª…z†i† : …5:47†

Since [291]

hªni ¹ n…3‡®†=2; …5:48†
it follows that, as z ! 1,

hª…z†i ¹ 1 ¡ …1 ¡ z†…1‡®†=2: …5:49†

When this representation is substituted into (5.47) one ®nds that

J…z† ¹ …1 ¡ z†¡…3‡®†=2 …5:50†

Then, making use of a Tauberian theorem [292], one obtains

hx2…n†i ¹ n…1‡®†=2; …5:51†
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or

dw ˆ
4=…1 ‡ ®† …0 < ® < 1†;
2 …® 5 1†:

»
…5:52†

The above analysis has the characteristics of a mean-®eld theory in that the
spatial structure of the comb teeth is replaced by an average waiting-time distri-
bution independent of the x-coordinate. Thus the detailed structure of the comb is
taken into account in an approximate , rather than an exact, way. A self-consistent
approach [291], that takes account of the detailed spatial structure in a more exact
way is presented in the following. The e� ect of the teeth is to delay the walk along the
backbone. The delays in a single tooth are characterized by an average waiting time

½…L† [260]:
½…L† ¹ L; L ¾ 1: …5:53†

Thus a transition rate w…L† ¹ 1=L is associated with a tooth of length L. Since the
distribution of lengths has the asymptotic property shown in (5.44), it follows that
the distribution of the waiting times is p…w†, where

p…w† ˆ ’…L†
dw=dL

¹ w¡…1¡®†: …5:54†

The di� usion exponent dw is calculated using (5.8).

t

hx2i
¹

…1

wmin

p…w†
w

dw ¹ w®¡1
min ; ® < 1: …5:55†

The detailed structure of the comb enters through the cut-o� wmin. This cut-o� is a
measure of the smallest transition rate the random walker sees during a displacement
x. This minimum transition rate is obtained from the smallest of two characteristic
lengths in the y-direction. One is the maximum tooth length within a distance x along
the backbone, which scales as x1=® . The second is the span of a random walk
di� using in the y-direction when the teeth are in®nitely long. This span y is given by
the relation

y2 ¹ t ¹ xdw : …5:56†

The second of these relations re¯ects the anomalous di� usion along the backbone.
The maximum span Lmax is therefore the minimum of these two lengths:

Lmax ˆ min …xdw=2; x1=®†: …5:57†

Since w ¹ 1=L, wmin ¹ 1=Lmax . It can be seen a posteriori that xdw=2 is smaller than
x1=® for all ®. Substituting (5.57) into (5.55), one obtains

t=hx2i ¹ x¡dw…®¡1†=2; …5:58†

from which one ®nds a self-consistent equation for dw:

dw ˆ 2 ¡ 1
2
dw…® ¡ 1†; …5:59†

and (5.52) follows.
The reason for the success of the `mean-®eld’ CTRW approach is that the very

long teeth have a negligible e� ect, since (5.56) and (5.57) imply that a random walker
rarely visits the tips of those teeth. Thus large ¯uctuations in the length of the teeth
are not relevant, and the CTRW approach is valid. Equation (5.52) has been tested
numerically [291] by performing random walks on random combs with several values
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of ®. Numerical results for hx2i as a function of t obtained using the exact
enumeration method are shown in ®gure 33. For the values of ® ˆ 1; 2

3;
1
2;

2
5;

1
5;

1
10

it
was found from the slopes of ®gure 33 that dw ˆ 2:08 § 0:1 (dw ˆ 2 from (5.52)),
2:38 § 0:05 (2.4), 2:69 § 0:05 (2.67), 2:82 § 0:05 (2.86), 3:24 § 0:10 (3.33) and
3:60 § 0:10 (3.63), in excellent agreement with the values predicted from (5.52).

A similar approach can be applied to calculate the long-time autocorrelation
function P0…t† ¹ t¡ds=2, which is the probability that a random walker initially at the
origin is found at time t at the origin. It was shown by Alexander and Orbach [45]
that ds ˆ 2df=dw, (2.12). Since the random walker does not visit the tips of the longer
teeth, df should represent the fractal dimension of the volume M visited by the
walker. This can be approximated as

M ¹
Xx

Lˆ1

L ¹ x

…Lmax

0

L 0P…L 0† dL 0 ¹ xL1¡®
max; …5:60†

where Lmax is found from (5.57). This leads to

M ¹ xdf ² x1‡dw…1¡®†=2; …5:61†
or

df ˆ 1 ‡ 1
2
dw…1 ¡ ®†: …5:62†

This relation can also be derived by substituting ~±± ˆ 1 in the Einstein relation
dw ˆ df ‡ ~±±. Using (5.52) and (5.62), one obtains

1
2
ds ˆ

1
4
…3 ¡ ®† …® 4 1†;

1
2

…® > 1†:

(
…5:63†

There are two limiting cases in which contact can be made with earlier results. When

® > 1 the ®rst moment of the length distribution in (5.44) is ®nite, and the mean
sojourn time on a tooth is also ®nite. For the transition value ® ˆ 1 one ®nds dw ˆ 2
and ds ˆ 1

2
, which is the same as for a one-dimensional random walk when the
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Figure 33. Plot of the mean-square displacement along the backbone, hx2i1=2
, as a function

of t for several values of ®: ^, ® ˆ 1; ^, 2
3; ~, 1

2; ¢, 2
5; !, 1

5; !, 1
10.
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variance of the step length is ®nite. The case ® ˆ 0 corresponds to a comb in which
the teeth are all in®nite, for which it has been shown [239] that dw ˆ 4 and ds ˆ 3

2
.

Note that, although ds < 2 for all ®, the random walker visits only a subset of the
comb that has a fractal dimension smaller than that of the comb, (5.62). This is in
contrast with the situation for di� usion on isotropic fractals, for which a random
walk is recurrent whenever ds < 2. Indeed, for di� usion on ®nitely rami®ed loopless
fractals (which are closely related to combs), di� usion is always recurrent. This is
since for trees ds ˆ 2dl=…1 ‡ dl† (section 4.1), and ds is always less than 2.

It is interesting to see how the present approach can be used to obtain results for
di� erent fractal models. As an example, let us consider di� usion on the incipient
in®nite percolation cluster generated on a Cayley tree. This can be modelled by
di� usion on the backbone of a comb. The excursions on dead ends are modelled by
the excursions on the teeth of the comb. The distribution of dangling-end sites s
along the backbone is ostensibly [18]

%…s† ¹ s¡3=2: …5:64†

It is physically reasonable to assume that the transition rates fwig scale as the inverse
of the dangling-end sizes, so that

P…w† ˆ %…d† ds

dw
¹ w¡1=2: …5:65†

Using the results of section 5.2, one obtains d l
w ˆ 3, as has been found earlier (see,

for example reference [57]).

6. Biased di� usion in disordered media
In this section we study the e� ect of an external bias ®eld on the di� usion in

disordered media. The ®eld makes a di� using particle more likely to move along the
direction of the ®eld than otherwise. In the case of a uniform non-random medium
the e� ect of such a bias is to produce a drift velocity in the direction of the ®eld that
increases with the ®eld. In the case of a disordered structure the bias has two
competing e� ects. On the one hand, the bias pushes the walker along the direction of
the ®eld. On the other hand, dead ends create temporary traps, and in order to
escape from them the walker must move against the ®eld. Examples of physical
realizations of the above situation are the cases of di� usion of particles in gels under
gravity, or in centrifugal forces as in chromatographic columns [293], and hopping
electron conduction in doped semiconductors in the presence of strong electric ®elds
[294±296]. Several cases of bias di� usion on random structures have recently been
studied extensively [240±242, 246, 259, 260, 276, 297±305]. The bias ®eld, E is
modelled by giving the random walker a higher probability P‡ of moving along the
direction of the ®eld, and a lower probability P¡ of moving against it,

P§ ˆ A…1 § E†; …6:1†

where A is an appropriate normalization factor. The motion of the walker in a
transverse direction to the ®eld is not a� ected. The ®eld can be uniform, as the
electric ®eld between the plates of a condensor (Cartesian bias), or directed in
topological space, as in a bias of hydrodynamic origin (topological bias). The
hydrodynamic ¯ow biases the particles along the direction of the ¯ow, and the bias
depends on the ¯ow velocity. De Arcangelis et al. [304] studied the hydrodynamic
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transport using an iterative algorithm similar to the exact-enumeration method.
Roux et al. [306] applied a transfer-matrix algorithm to a similar model. T. Ohtsuki
and T. Keyes (1987, preprint) studied the problem using real-space renormalization.
A distinction is made between the di� usive regime, in which a particle has a ®nite
probability of di� using against the direction of the current ¯ow, and the convective
regime, where backwards di� usion is not allowed. A much studied [259, 260, 276]
simple case of hydrodynamic bias is the Knudsen limit. In this limit particles
experience topological bias along the direction of the ¯ow, but independent of the
current velocity. More speci®cally, in the Knudsen limit, every bond experiences a
constant bias ®eld, which drives the walker away, in chemical distance, from a point
source. The walker has an enhanced probability P‡ ˆ A…1 ‡ E† that the next step
increases the chemical distance from the source, and a decreased probability
P¡ ˆ A…1 ¡ E† that the next step decreases the chemical distance (®gure 34).
Di� usion with a constant bias has been studied on random structures such as self-
avoiding walks [302], random combs [240, 260, 276, 299], and percolation clusters
above criticality [259, 297±299, 301] and at criticality [246, 276, 298, 303].

It has been argued that for certain random structures a dynamical phase
transition occurs as the bias ®eld varies. For example [240, 241, 260], in a random
comb with an exponential distribution of tooth lengths, a drift velocity that is ®nite
below a critical bias Ec vanishes above Ec. Moreover, above Ec the di� usion
exponent dw increases continuously with the magnitude of the bias [260]. There
exist numerical data supporting a dynamical phase transition for bias di� usion on a
random comb [260], and for a topological bias on percolation clusters [259] above pc.
On the other hand, numerical data for Cartesian bias on percolation clusters [297]
above pc, as well as on self-avoiding walks [302], are inconsistent with such a
transition.

For biased di� usion on a random comb with a power-law distribution of tooth
lengths, it has been shown theoretically that di� usion is anomalously slow, with hr2i
scaling as a power of ln t, rather than of t. A similar anomalous logarithmic
behaviour has been observed numerically in percolation clusters at criticality for
Cartesian bias [303] and topological bias [276].

6.1. Dynamical phase transition
We shall consider biased di� usion on a random comb structure as shown in

®gure 35. This simple model encompasses the essential features of biased di� usion on
disordered media, yet is simple enough to be treated rigorously. As we shall see in
section 6.3, this model is particularly useful in the study of topological bias on
percolation systems.

Consider a random comb with an exponential distribution of tooth lengths:

Di� usion in disordered media 247

Figure 34. Comparison between (a) Cartesian bias with a ®eld directed along the x-axis and
(b) `topological’ bias for a simple structure. In (b) ¯uid in injected at A, and every
point in the ¯ow experiences a ®eld E along the chemical distance from the origin A.
The arrows denote the direction of the local bias in each bond.
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P0…l† ˆ ¶lj ln ¶j ˆ 1

l0
exp ¡ l

l0

³ ´
; 0 4 l 4 1; …6:2†

where ¶ ² exp …¡1=l0†. This choice is relevant to bias di� usion on percolation
clusters above criticality. We ®rst present the transport properties along the back-
bone of the comb when a ®eld is applied along the y-direction. The physical e� ect of
the teeth is to provide a set of random delays (or waiting times) along the backbone.
A waiting time ½…l† is associated with a tooth of length l. To calculate ½…l†, consider a
random walker on a tooth of length l at a distance j …< l† from the backbone. Let Tj

be the mean ®rst passage time to reach the backbone and let ½…l† be quantitatively
taken as ½…l† ˆ T1. Since the walker on the next step moves either to site j ‡ 1 (with
probability P‡) or to site j ¡ 1 (with probability P¡), the following recursion relation
can be written for Tj [260]:

Tj ¡ 1 ˆ 1
2
…1 ¡ Ey†Tj¡1 ‡ 1

2
…1 ‡ Ey†Tj‡1: …6:3†

Equation (6.3) is subject to the boundary conditions

Tjˆ0 ˆ 0; Tl ˆ Tl¡1 ˆ
2

1 ¡ Ey
; …6:4†

since j ˆ 0 and j ˆ l are `absorbing’ and `re¯ecting’ points respectively. The solution
of (6.3) and (6.4) for T1 gives

½…l† ˆ T1 ˆ
1

Ey

µ³
1 ‡ Ey

1 ¡ Ey

´l

¡ 1

¶
: …6:5†

Since the behaviour is dominated by the long teeth, one has in the asymptotic limit
(see also reference [241]).

½…l† ¹
1 ‡ Ey

1 ¡ Ey

³ ´l

…l ¾ 1†: …6:6†

The transition rate to pass by this tooth, w…l†, is given by the reciprocal of the mean
waiting time ½…l† spent on it:

S. Havlin and D. Ben-Avraham248

Figure 35. Bias di� usion on a random comb structure. The backbone is parallel to the x-
axis. The bias ®eld may in general have components along both the x- and the y-directions.
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w…l† ¹
1 ¡ Ey

1 ‡ Ey

³ ´l

² exp ¡
l

¤

³ ´
: …6:7†

The rates fw…l†g are random variables whose probability distribution P…w† is directly
related to the distribution P0…l† of the teeth by

P…w† ˆ P0…l†
dl

dw
: …6:8†

Substituting (6.2) and (6.7) into (6.8) yields

P…w† ¹ w¡¬; …6:9 a†
where

¬ ˆ 1 ¡ ¤

l0
ˆ 1 ¡ ln ¶= ln

1 ¡ Ey

1 ‡ Ey

³ ´
: …6:9 b†

By this, the problem of biased di� usion on a random comb structure with
exponential distribution of teeth is mapped to the problem of biased di� usion on
a linear chain with a power-law distribution of transition rates. Using the results of
sections 5.1 and 5.2, one obtains

dw ˆ
2 …¬ < 0†;

2 ‡ ¬

1 ¡ ¬
…0 4 ¬ 4 1†:

(
…6:10†

When the ®eld has a non-zero component along the backbone (x-direction) the
results in section 5.1 for the case of unbiased di� usion are extended to bias di� usion.
Because of the bias, the time t that the walker takes to pass by a distance x is
proportional to the sum of the waiting times along the covered distance,

t ¹
Xx

iˆ1

½i ˆ
Xx

iˆ1

1

wi
: …6:11†

From (6.9 a) and (6.11) one obtains

t ¹ x

…1

wmin

1

w
P…w† dw ¹

x …¬ < 0†;
xw¡¬

min …¬ > 0†:

»
…6:12†

For ¬ 4 0 the ballistic result for biased di� usion on uniform Euclidean lattices,
t ¹ x, is recovered. The case ¬ > 0 is more interesting. Since

wmin ˆ x¡1=…1¡¬†; …6:13†
we have t ¹ xdw , with

dw ˆ
1 …¬ < 0†;

1 ‡ ¬

1 ¡ ¬
…0 4 ¬ 4 1†:

(
…6:14†

The results for a general bias ®eld can be summarized, using (6.9 b), as follows:

dw ˆ
d0

w …Ey < Ec
y…¶††;

d0
w ‡

ln ‰…1 ¡ Ey†=…1 ‡ Ey†Š
ln ¶

…Ey > Ec
y…¶††:

8
<

: …6:15 a†
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Here d0
w is the di� usion exponent along the backbone in the absence of teeth:

d0
w ˆ

2 …Ex ˆ 0†;
1 …Ex > 0†:

»
…6:15 b†

The critical bias ®eld, Ec
y…¶† corresponding to ¬ ˆ 0 is given by [240, 241, 260]

Ec
y…¶† ˆ 1 ¡ ¶

1 ‡ ¶
: …6:16†

On crossing Ec
y…¶†, there is a phase transition in the dynamics. For Ey < Ec

y the
transport on the backbone is normal, but for Ey > Ec

y the ®eld con®nes the walker to
the teeth more e� ectively, with the result that dw increases anomalously.

Equations (6.15) and (6.16) have been tested by performing extensive numerical
studies of biased di� usion on random combs [260] using the exact-enumeration
method [47, 83]. Results for the di� usion exponent dw for a range of bias ®elds E and
for di� erent values of ¶ (characterizing the di� erent distributions) are shown in
®gure 36.

6.2. Bias leading to logarithmic behaviour
Consider a random comb with a power-law distribution of teeth [276]:

P0…l† ˆ ®l¡…1‡®†; 1 4 l 4 1: …6:17†

This choice is relevant to biased di� usion on percolation clusters at criticality. In this
case the mass l of the dangling ends emerging from the quasi-linear backbone is
algebraically distributed (see section 6.3).

For a bias ®eld along the y-direction the average time ½…l† that a random walker
spends on a tooth of length l is given by (6.6). Combining (6.6) and (6.17), one ®nds
that the probability distribution P…w† of transition rates along the backbone is
given by

P…w† ˆ ®¤

w…ln w†1‡®
: …6:18†

This distribution for transition probabilities was discussed in section 5.2, and its
solution was presented in (5.25) and (5.26). Making the trivial substitutions V ˆ l
and  ˆ 1=¤, one obtains

S. Havlin and D. Ben-Avraham250

Figure 36. Dependence of dw on the bias ®eld Ey. Data are shown for the cases ¶ ˆ 1
3 (*)

and 1
2 (£) with Ex > 0, and for ¶ ˆ 2

3 (‡) with Ex ˆ 0. The solid curves represent the
theoretical result of (6.15).
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hx2i ¹ …¤ ln t†2® ; ¤ ˆ ln
1 ‡ Ey

1 ¡ Ey

³ ´¡1

: …6:19†

When a non-zero ®eld is also applied along the x-direction, the time t that the walker
needs to pass by a distance x on the backbone is obtained as in (6.10):

t ¹
Xx

iˆ1

½i ¹ x

…1

wmin

dw

w2…ln w†1‡®
: …6:20†

Since

wmin ˆ exp ¡ x1=®

¤

³ ´
; …6:21†

one obtains from (6.20)

hx2i ¹ …¤ ln t†2®: …6:22†

Hence for any direction of the ®eld in the …x; y† plane the motion of the walker is
characterized by the same logarithmic time dependence.

Computer simulations of random walks on random combs with various values of

® and E have been performed [276] in order to test (6.22). Representative results for

® ˆ 2, and several values of E, are shown in ®gure 37. The results are in good
agreement with (6.19) and (6.22).

The above results are very slightly a� ected for comb-like structures with
backbones of a higher dimension. In fact, for a bias ®eld with a non-zero component
along the backbone (x-direction), the results do not change at all. For a bias ®eld
perpendicular to the backbone, the results change only quantitatively . For example,
for a power law distribution of teeth, emerging from a d-dimensional backbone, the
mean-square displacement is

hr2i ¹
‰¤…E† ln tŠ2® …d ˆ 1†;

‰¤…E† ln tŠ® …d 5 2†:

(
…6:23†

6.3. Biased di� usion on percolation clusters
The problem of non-biased di� usion on percolation clusters has been described

in detail in section 3. It is well established that the r.m.s. displacement as a function
of time is described adequately by a power law,

hr2i ¹ t2=dw : …6:24†

The question of what happens when a uniform (Cartesian) bias ®eld is applied is
controversial. Barma and Dhar [240] have predicted that above the percolation
threshold the drift velocity vanishes above a critical ®eld. On the other hand, Bottger
and Bryskin [294] and also Pandey [297] on the basis of numerical simulations of
percolation in d ˆ 3, suggest that the drift velocity goes to zero only for an in®nite
bias ®eld (corresponding to E ˆ 1), and that there is no dynamical phase transition.

The problem of biased di� usion on percolation may be modelled by biased
di� usion on random combs. The motion of the walker along the backbone of the
percolation cluster is analogous to the motion along the backbone of the comb.
Frequently, the walker sojourns at a dangling end of the cluster, spending there a
typical time characteristic of the size of the dangling end. This is similar to the time
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spent by the walker in the teeth of the comb. Although for d < 6 the backbone is not

really a one-dimensional object, the analogy is not spoiled, because of the

insensitivity of transport properties to the dimension of the backbone (as discussed

at the end of section 6.2). For p > pc the mass of dangling ends is, ostensibly,

exponentially distributed, and for p ˆ pc it follows a power-law distribution. The

corresponding distribution for the length of the teeth in the random comb is chosen

accordingly. Much of the research [240, 241, 294, 297±303] on biased di� usion deals

with a uniform (Cartesian) bias ®eld. In this case, not only dead ends but also

backbends [307] act as temporary traps. This e� ect can be modelled, similarly to the

trapping in dead ends, by trapping in the teeth of the random comb.

In a recent work [259] di� usion on the in®nite percolation cluster above the

percolation threshold, p > pc, under the in¯uence of a bias ®eld E in topological

space (`topological bias’) has been studied. Numerical simulations using the

exact-enumeration method support the dynamical phase transition [260, 298] of

section 6.1. The mean chemical distance hli travelled by a random walker can be

writen as [57]

hli ¹ t1=d l
w ; …6:25†

S. Havlin and D. Ben-Avraham252

Figure 37. (a) Plot of hxi1=® against ln t for di� usion on the random comb with ® ˆ 2 for
di� erent values of bias ®elds: *, E ˆ 0:9; ~, 0.7; &, 0.4; *, 0.2. The curves represent
the best asymptotic linear ®ts. (b) Dependence of A…Ey† on Ey. The points represent
the inverse of the slopes presented in (a), and the curve is plotted from (6.19). For
the simulations, combs of size L ˆ 300 and averages over 100 con®gurations each
were taken.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
P
r
i
n
c
e
t
o
n
 
U
n
i
v
e
r
s
i
t
y
 
L
i
b
r
a
r
y
]
 
A
t
:
 
0
1
:
1
2
 
9
 
D
e
c
e
m
b
e
r
 
2
0
0
9



where d l
w is the topological di� usion exponent. The numerical data [259] suggest that

below a critical ®eld Ec… p† a velocity drift in the chemical space exists, re¯ected by
d l

w ˆ 1. Above Ec… p† di� usion is anomalous and non-universal: the di� usion
exponent d l

w increases with E as

d l
w ˆ A… p† ln

1 ‡ E

1 ¡ E

³ ´
…E > Ec… p††: …6:26†

Here A… p† is analogous to …ln ¶†¡1 in (6.15 a). It is a characteristic of the distribution
of dangling ends, and it decreases monotonically with the concentration p. The
theoretical derivation of (6.26) depends crucially on the assumption that the e� ective
dead-end’s length in percolation clusters follow an exponential distribution. The
numerical results [259] supporting (6.26) indirectly con®rm this assumption.

Studies of bias di� usion on percolation systems at the percolation threshold pc

were carried out by several authors [246, 276, 297, 298, 303]. Ohtsuki and Keyes [246]
applied a real-space renormalization-group method and found for Cartesian bias
hri ¹ tx with x < 1. Preliminary numerical data for Cartesian-bias di� usion in d ˆ 3
percolation at pc presented by Pandey [297] suggest that either hr2i ¹ tk with very
small k, or else hr2i ¹ …ln t†x. Later numerical results for d ˆ 2 and 3, presented by
Stau� er [303], support the logarithmic time dependence. In a recent work [276],
topological bias di� usion on the in®nite incipient percolation cluster at criticality in
d ˆ 2 and on a Cayley tree, was studied theoretically and numerically. An
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Figure 38. (a) Plot of hli against ln t on percolation clusters generated in d ˆ 2 at criticality,
for di� erent values of bias ®elds: *, E ˆ 0:9; ~, 0.8; *, 0.7; &, 0.5; !, 0.3. The
solid lines are best linear ®ts. (b) Dependence of A…E† on E. The points represent the
inverse of the slopes presented in (a), and the line represents the theory (6.19). For
the calculations, clusters of up to 200 shells were generated and averages were made
over 100 con®gurations.
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assumption of a power-law distribution for the e� ective dangling-end lengths in
percolation clusters leads (see section 6.2) to a logarithmic time dependence:

hli ¹ …¤…E† ln t†®; …6:27†

where ® characterizes the distribution of dangling ends and ¤…E† is given by (6.7). To
test the validity of (6.27) for percolation clusters, computer simulations of random
walks with various values of topological bias ®elds were performed using the exact-
enumeration method. Results for d ˆ 2 percolation clusters and percolation on a
Cayley tree are shown in ®gures 38 and 39. For both cases the best agreement with
(6.27) is obtained for ® º 1.

The value of ® º 1 for percolation on a Cayley tree (mean ®eld) is explained by
the following scaling argument. A random walker along the backbone of the
incipient in®nite cluster is temporarily trapped along its way by dangling ends. It
is plausible that the mass s of the dangling ends is distributed the same as the mass of
clusters [18]

P0…S† ¹ S¡½‡1; ½ ˆ 5
2: …6:28†

The path length l is related [57] to the mass S by S ¹ l2. Hence the distribution of the
path lengths is

P…l† ˆ P0…S†
dS

dl
¹ l2…1¡½†‡1 ˆ l¡2: …6:29†

S. Havlin and D. Ben-Avraham254

Figure 39. (a) Plot of hli against ln t on percolation clusters generated on a Cayley tree at
criticality, for di� erent values of bias ®elds: *, E ˆ 0:9; ~, 0.8; *, 0.7; &, 0.5. The
solid lines are best linear ®ts. (b) Dependence of A…E† on E. The points represent
the inverse of the slopes presented in (a), and the curve is plotted from (6.19). For the
simulations, clusters of up to 200 shells and averages over 100 con®gurations were
taken.
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Comparing (6.29) and (6.17), we see that ® ˆ 1 for percolation on the Cayley tree.
For percolation in d < 6 the above argument does not apply. For example, in d ˆ 2
one obtains ® º 0:1 which is much smaller than the measured numerical value,

® º 1:0. This is since the structure of the dangling ends is complex and contains
loops. An e� ective ® is needed and cannot be calculated simply from ½ .

6.4. Bias along the backbone
For the case of a bias induced by the hydrodynamic ¯ow in porous media [29,

308, 309], it is relevant to study a model with a bias ®eld along the backbone alone.
This is since the net ¯ow in the dangling ends is zero. In the following we review a
simple realization of such a model.

Consider the case of biased di� usion along the backbone of the comb with a
power-law distrubiton of dead ends (6.17). In this case the particle has a drift along
the backbone …Ex 6ˆ 0† and di� uses regularly along the dead ends …Ey ˆ 0†. The
average time a particle spends on a tooth of size l is given by (6.5) in the limit
Ey ! 0:

Ti ² w¡1 ˆ
Ey!0

2l: …6:30†

Using (6.8) and (6.17), one obtains

P…w† ˆ 2®®w¡…1¡®†: …6:31†

The di� usion exponent dw is found in a self-consistent scaling approach, similar to
that of section 5.5. The total time spent on the backbone when a particle moves a
distance x is

t ¹
Xx

iˆ1

1

wi
¹ x

…1

wmin

1

w
P…w† dw ¹

x …® > 1†;
xw¡…1¡®†

min …® < 1†:

(
…6:32†

The quantity wmin is a measure of an e� ective smallest transition probability that the
random walker sees during the displacement x. This transition probability is the
inverse of an e� ective maximum span lmax made by the walker in the y-direction. This
lmax is the smaller of two lengths characterizing the walk along the y-direction. One is
the maximum tooth length within a distance x along the backbone, which scales as
x1=® . The second is the span of a random walk di� using in the y-direction, assuming
in®nite teeth. This span y is found from the relation

y2 ¹ t ¹ xdw : …6:33†

The ®rst relation describes regular di� usion along a tooth. The second of these
relations re¯ects the anomalous di� usion expected along the backbone because of
the sojourns of the particles along the teeth. (The di� usion exponent dw will be
calculated self-consistently.) The e� ective maximum span along the y-direction is

lmax ¹ min …xdw=2; x1=®†: …6:34†

Following the same approach as in section (5.5), one ®nds

dw ˆ
1 …® > 1†;
2…1 ‡ ®†¡1 …0 < ® < 1†:

(
…6:35†
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It is evident that the di� usion along the teeth slows the transport along the backbone
(compare to (5.52)) in spite of being regular. This slowing down is characterized by a
di� usion exponent dw > 1.

Similar arguments can be applied for the case of percolation systems in high
dimensions …d 5 6†. To this purpose, consider di� usion on the percolation cluster
generated on a Cayley tree. The bias ®eld acts on the particle only along the
backbone of the tree, and the motion is di� usive in the dangling ends. The analogy
between percolation on the Cayley tree and random comb with ® ˆ 1 used in section
6.2 cannot be used simple-mindedly here (substitution of ® ˆ 1 in (6.35) yields an
incorrect result). The di� usion on the dangling ends of the percolation cluster is
unbiased, but is anomalous …d l

w ˆ 3†, in contrast with di� usion on the teeth of the
comb, which is normal with d l

w ˆ 2. The distribution of the mass of dangling ends, S,
along the backbone is given by (6.28): P0…S† ¹ S¡½‡1.

Similarly to the result in (6.30), the transition probabilities fwig along the
backbone scale as the inverse of the corresponding dangling-end mass:

w ¹ 1

S
: …6:36†

Thus the distribution of these transition probabilities for w is

P…w† ˆ P0…S† dS

dw
¹ w¡…3¡½ †: …6:37†

Let lk…t† and l?…t† be the chemical distances traversed by the walker in t steps on the
backbone and on the dead ends respectively. Similarly to (6.33), l? and lk scales as

l
dl

w…Eˆ0†
? ¹ t ¹ l

dl
w

k : …6:38†

The ®rst relation results from the fact that no ®eld is acting along the dangling ends
(unbiased di� usion), and the second relation described the bias di� usion along the
backbone. Since S ¹ ldl

? , using (6.38) we obtain

S ¹ l
dl

wdl=d l
w…0†

k : …6:39†

The time spend on the backbone when a particle moves a distance lk is

t ¹
Xlk

iˆ1

1

wi
ˆ lk

…
1

w
P…w† dw ¹ lkw

¡…3¡½ †
min ; ½ < 3: …6:40†

Following the approach of section 5.5, one obtains

d l
w ˆ 1

1 ¡ …3 ¡ ½†dl=d l
w…0† : …6:41†

Substituting the known exponents for percolation on the Cayley tree, d l
w…0† ˆ 3,

½ ˆ 5
2
, dl ˆ 2, one obtains

d l
w ˆ 3

2: …6:42†

It would be interesting to con®rm this result by an independent theoretical approach,
and to test it numerically. For low dimensions, d < 6, (6.41) is not expected to yield
good results, since the backbone is not exactly linear as assumed in (6.40).
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6.5. Time-dependent ®elds
Transport properties of disordered systems under the in¯uence of time dependent

®elds have attracted considerable interest [37, 48, 200, 310±312]. Indeed, the case of
an alternating bias ®eld of small amplitude (the linear response regime) is closely
related to the dynamical (a.c.) conductivity, and has been studied both experi-
mentally [37, 311] and theoretically [37, 48, 200, 310].

Following the approach of Gefen et al. [48], the frequency dependence of the a.c.
conductivity ¼…!† can be analysed using the scaling form

¼…!† ˆ ¹¡~··s…!½†; ½ ˆ ¹dw : …6:43†

The factor ¹¡~·· follows from the d.c. limit ! ! 0, and ½ is a typical time scale of the
system derived from the anomalous di� usion. In the limit !½ ¾ 1 linear response
theory applies, and ¼…!† is independent of ¹; therefore

¼…!† ¹ !~··=dw …!½ ¾ 1†: …6:44†

Using the Kramers±Kronig relation for the dynamical dielectric constant °…!†,

°…!† ¡ 1 ¹ PV

…
d! 0¼…! 0†

! 0…! 0 ¡ !† ; …6:45†

one obtains

°…!† ˆ !2¡ =¸ f …!½†: …6:46†

In the linear response regime, ½ ¾ 1,

°…!† ¹ !¡1‡~··=dw : …6:47†

An alternative approach [310] to obtain the frequency dependence is by using the
result of Scher and Lax [286] valid for the linear response regime, relating ¼…!† to the
mean-square displacement hR2…t†i:

¼…!† ¹ n!2 lim
²!0

…1

0

exp …¡i!t† exp …¡²t†hR2…t†i dt: …6:48†

Here n is the charge density, which scales as n ¹ ¹df ¡d ¹ !…d¡df†=dw ˆ ! =¸dw . From
(6.57) it follows that

¼…!† ¹ exp ¡i 1 ¡ 2 ¡  =¸

dw

³ ´
p
2

µ ¶
!1¡…2¡ =¸†dw : …6:49†

Since dw ˆ 2 ‡ ~·· ¡  =¸, (3.18), this is exactly the same result as in (6.44), and in
addition there is also a prediction for the phase shift between the current and ®eld.

Bernasconi et al. [37] successfully explained the anomalous frequency dependence
of the conductivity observed in the one-dimensional superionic conductor hollandite.
They used a model with an exponential distribution of potential barriers, and a
Boltzmann distribution of transition rates. It predicts an anomalous low-frequency
conductivity, ¼…!† ¹ …¡i!†¸, with ¸ ˆ …1 ¡ T=Tc†=…1 ‡ T=Tc† for T < Tc, and a
mobility transition for T ˆ Tc. This result is consistent with the result of (5.37) in
section 5.3, which was derived for di� usion in the same model. The equivalence with
(5.37) is evident when considering the relation ¼…!† ¹ …¡i!†1¡2=dw , obtained from
(6.49) (for a one-dimensional system  ˆ 0). However, the theory for ¼…!† and °…!†,
discussed above, has been found [311] to be less successful in explaining the results
for d ˆ 2 percolation. Laibowitz and Gefen [311] measured ¼…!† and °…!† for thin
gold ®lms near the percolation threshold. They found that ¼…!†=°…!† ¹ !, in
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accordance with (6.44) and (6.47), but that ¼…!† ¹ !0:95, which strongly disagrees

with the prediction of (6.44) that ¼…!† ¹ !·=dw ˆ !0:34. This discrepancy has been
attributed [311] to the neglect of electron±electron interactions.

So far, only the linear response regime has been discussed. Harder et al. [310]

studied the nonlinear response in two-dimensional percolation clusters. They found

that for large applied ®elds the phase shift is still consistent with the shift predicted
by linear response theory, but that the amplitude of the response is markedly

di� erent, and shows strong nonlinear e� ects. In ®gure 40 the amplitude of the

displacement of a particle, A…E0; !†, under the in¯uence of a bias ®eld E ˆ E0 sin !t

is shown. For low frequencies there is a strong nonlinearity.

7. Trapping and di� usion-limited reactions

The range of applications of the theory of di� usion in disordered media is

immense. Among the most important are the kinetics of trapping processes, and

di� usion-controlled reactions. Practical applications include various dynamical
processes occurring in (fractal) disordered media such as powders, porous earth

and rocks [313], amorphous solids [314], atmospheric dust, micellar systems [315,

316], and polymers in solution [317]. Physical examples include electron±hole

recombination in random surfaces and in amorphous solids, exciton trapping and
annihilation [251, 318], luminiscence, and slow drug release from a leaky matrix

[319], to name just a few. Whenever the trapping process (for example of an exciton)

or the reaction (for example between particles) is rapid in comparison with the

characteristic time scale associated with the di� usion mechanism of motion of these

excitons, or particles, the di� usion process becomes the most important factor in
determining the kinetics of the system. Such systems are said to undergo a `di� usion-

limited’, or a `di� usion-controlled’ process, and are the subject of this section.

The simplest cases of trapping (whether perfect or temporary) or a random

walker, of one-species annihilation, A ‡ A ! inert, and two-species annihilation,

A ‡ B ! inert, already contain the basic ingredients giving rise to the characteristic

S. Havlin and D. Ben-Avraham258

Figure 40. Plot of A…E0; !† as a function of E0 for various values of frequency !: *,
! ˆ 0:002; *, 0.005; ~, 0.01; &, 0.02; !, 0.05; ~, 0.1.
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anomalous dynamics of di� usion-limited processes in disordered media. Most of the
research work has been carried out for just such systems, and we review it below.

7.1. Trapping
The problem of trapping is fundamental for the understanding of kinetics of

reactions. Image a random walker in a medium that is ®lled with static trapping sites
at a ®nite concentration. The random walker represents some kind of excitation, or
an active chemical species, and the trapping centres could be sites at which the
excitation is dissipated, being converted to some other kind of energy, or they could
represent some other chemical species that combines with the ®rst, thus deactivating
it. The question of interest is: what is the trapping rate, or, equivalently, the survival
probability, or how the concentration of random walkers decays with time. We
assume that trapping occurs immediately upon the encounter of a random walker
with a trapping centre, so that the process is di� usion-limited.

For traps randomly distributed in a d-dimensional Euclidean space, the
asymptotic result for the decay of n…t†, the number of random walkers, is [126, 127]

n…t† ¹ exp f¡ac2=…d‡2†td=…d‡2†g: …7:1†

Here c is the concetration of traps and a is a dimension-dependent constant. This
result has been rigorously proved [126] for t ! 1. For the one-dimensional case
several authors [131, 320, 321] have presented a more detailed result, which also
includes the prefactor to the exponential dependence. Weiss and Havlin [311] prove
that in d ˆ 1 the di� usion of the surviving particles is anomalous, with
hR2…t†i ¹ t2=3. Equation (7.1) is best understood, as shown by Grassberger and
Procaccia [127], as being the consequence of the very large, but rare, trap-free
regions, enhancing the survival probability of walkers in the long-time limit. Indeed,
the probability of having a trap-free region of volume V , is according to the Poisson
distribution,

P0…V† ˆ exp …¡cV†: …7:2†

The probability P…V ; t† that a given random walker survives for a time t in a trap-
free region of volume V enclosed by a trapping boundary is, asymptotically,

P…V ; t† ¹ exp ¡const £ t

V2=d

³ ´
: …7:3†

The survival probability S…t†, and hence the mean number of walkers n…t†, is
dominated by

S…t† ¹ n…t† ¹ max
fVg

‰P0…V†P…V ; t†Š; …7:4†

giving rise to the result (7.1).
The above results easily generalize to trapping in fractal space. The only

di� erence is that, because of anomalous di� usion, the scaling of time with the
volume covered by the walker is t ¹ Vdw=df ˆ V2=ds ; hence, instead of (7.3), one has

P…V ; t† ¹ exp const £ t

V2=ds

³ ´
: …7:5†

On using this result and (7.4), one ®nally arrives at [322, 323]

n…t† ¹ exp fconst £ c2=…ds‡2†tds=…ds‡2†g: …7:6†
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Thus (7.6) is exactly the same as (7.1), except that d is replaced by ds.
The question of the range of validity of (7.6) or (7.1) has recently attracted much

interest [130, 323, 324]. Havlin et al. [130] found that for two and three dimensions
the asymptotic behaviour of n…t†, (7.1) can be observed when the survival probability
drops below 10¡13 (®gure 41). These results are based on exact-enumeration
simulation methods. In spite of the extreme conditions required for the onset of
asymptotic behaviour, it has been observed numerically in Monte Carlo simulations
for trapping in d ˆ 1 [129, 325], in percolation clusters in two and three dimensions
[322]. Very recently it has been observed experimentally [326] by monitoring
the electron-transfer reaction from methyl viologen monocations to colloidal
platinum in an aqueous solution. A decay is reported there of the form
n…t† ¹ exp …¡¬t ¡  td=…d‡2†† …in d ˆ 3†, which is in agreement with the scaling
prediction of Redner and Kang [327] for the case of mobile traps. For the trapping
of particles in percolation clusters, Shapir [326] has found that the long-time
behaviour is dominated by the more rami®ed clusters, with ds ˆ 1, leading to one-
dimensional behaviour in any dimension. No numerical simulations or experimental
observations of this phenomenon are currently available.

For the important regime of short time [133, 328] the cumulant expansion

S…t† ˆ exp
X

j

kj;t‰¡ ln …1 ¡ c†Š j=j!
» ¼

…7:7†

can be truncated after a few terms, and it completely describes the trapping process.
Here kj;t are cumulants of S…t†, the number of distinct sites visited by a random-
walker after t-steps. Zumofen et al. [133] combined the results for the short- and the
large-time regimes into a scaling form

S…t† ¹ exp ‰¡f …x†Š; x ² ln …1 ¡ c†tds=2 …7:8 a†

S. Havlin and D. Ben-Avraham260

Figure 41. (a) Results for ln P…n† for di� erent values of trap concentrations c in d ˆ 2
dimensions and step sizes n, plotted as a function of % ˆ ‰¡ ln …1 ¡ c†Š1=2n1=2. (b)
Results for ln P…n† for di� erent values of trap concentrations c in d ˆ 3 dimensions
and step sizes n, plotted as a function of % ˆ ‰¡ ln …1 ¡ c†Š2=5

n3=5. The results shown
here have been obtained by the exact-enumeration method. (After Havlin et al. [130].)
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and

f …x† ˆ

X

j

aj…¡x† j=j! for small x;

Ax2=…ds‡2† for large x:

8
<

: …7:8 b†

where the aj and A are constants. This scaling form works nicely for small x,
reasonably well for the Sierpinski gasket and in d ˆ 1, but yields rather poor results
for the square lattice. Obviously, a full answer to the problem of trapping that
includes all the di� erent regimes is still required.

We note that the case of imperfect trapping, in which a trap captures the random
walker with a probability f < 1, is also of interest. The particular case of temporary
traps has been extensively discussed in section 5. Weiss and Havlin [329] generalized
the imperfect-trapping problem to the non-Markovian case where a trap is
characterized by a set of probabilities f fjg. Here fj is the probability that the jth
encounter leads to a trapping event. They show that for such traps, when distributed
on a line …d ˆ 1†, the asymptotic survival probability of a walker falls o� as
t1=2 exp …¡at1=3† (cf. (7.1)), provided that the fj have an associated ®nite ®rst moment.
However, when fj is asymptotically proportional to 1=j1‡¬, where 0 < ¬ < 1, the
survival probability falls o� as 1=t¬. Another problem of interest is that of the
trapping of random walkers that interact amount themselves. The particular case of
a hard-core interaction between the di� using particles is discussed and reviewed in
section 8.1.

7.2. One-species annihilation and the e� ect of di� usion
While trapping is a good model for the dissipation of excitations in disordered

media, it is insu� cient as a model for chemical reactions. This is due to the
assumption made in the trapping model that the traps are static. In chemical
reactions all the reactions are in motion, giving rise to di� erent kinetics than
predicted by the trapping model.

The dramatic e� ect of di� usion in a di� usion-controlled process, as opposed to a
reaction-limited process (described by the mean-®eld rate equations), can already be
seen in the simple case of one-species annihilation [128, 330±335]. Imagine a system
containing particles of just one species A. The particles di� use, and, on collision of
two particles, either one is annihilated or they combine to form an inert species that
does not participate in the process. The two cases are represented schematically by

A ‡ A !k A …7:9 a†
and

A ‡ A !k inert; …7:9 b†
respectively.

In the mean-®eld limit, i.e. the reaction-limited case, the kinetics of the process
are described by a simple rate equation;

_ccA…t† ˆ ¡kc2
A…t†: …7:10†

Here, cA…t† is the concentration of A-particles at time t, and the dot denotes
di� erentiation with respect to time. In this approximation, the two processes in
(7.9 a, b) are described by the same rate equation (7.10), and the di� erent numbers of
particles that result from a single reaction in each case can be easily taken into
account in the reaction constant k. The solution of (7.10) is
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cA…t† ˆ 1

kt ‡ 1=cA…0† ; …7:11†

which is the mean-®eld prediction for the decay of concentration in the one-species
annihilation process.

The di� usion-controlled process of one-species annihilation has been studied
extensively [128, 330±335]. Peliti [336] has shown rigorously, using a ®eld-theory
approach, that the two processes (7.9 a, b) are in the same universality class. The
kinetics of the process has been derived by several authors [128, 332, 334, 336], and
the theory includes rigorously proved results. The concentration decays as

cA…t† ¹ 1=td=2; d < dc ˆ 2: …7:12†

For d < 2 the kinetics is anomalous, and dc ˆ 2 is the upper critical dimension
above which the process is normal and decays according to the mean-®eld prediction
of (7.11).

A simple scaling argument [333, 335] that stresses the role of di� usion and leads
to the result of (7.12) is as follows. Imagine a domain in the system of linear size L.
Initially there are in this domain of the order cA…0†Ld particles, but, as the process
goes on, the particles in the domain interact and annihilate in pairs. After a time
t ¹ L2 (a characteristic time for a di� using particle to get across the domain) all
the particles in the domain have had the chance to interact and annihilate, leaving of
the order of one particle in it. Thus at time t

cA…t† º 1

Ld
¹ 1

td=2
; …7:13†

which is exactly the result given in (7.12). For d > 2 the random walk performed by
the particles is not recurrent, and therefore waiting a time t ¹ L2 is not su� cient for
the completion of the process within the domain, and the above argument breaks.
The mean-®eld result that cA…t† ¹ 1=t is then valid. The argument is easily general-
ized to disordered media. The characteristic scaling of time is then t ¹ Ldw and upon
the completion of the process in the domain, the residual concentration is [330, 331]

cA…t† ˆ 1

Ldf
¹ 1

tdf =dw
ˆ 1

tds=2
:

Thus one gets the same result as in (7.13), only d is replaced by ds. In addition to the
numerical simulations [330], there have been some remarkable experiments of
Kopelman et al. [41] on porous membranes, ®lms, polymeric glasses and isotropic
mixed crystals, con®rming this result.

We mention that the process in (7.9 a) describes, in a gross manner, the particle-
coalescence model (PCM). A more detailed description of this aggregation is

Ai ‡ Aj ¡!
ki; j

Ai‡j: …7:14†

Here Ai denotes a particle of mass i, and (7.14) symbolizes the event in which a
particle of mass i sticks to a particle of mass j, resulting in a particle of mass i ‡ j. If
we give up the identi®cation of di� erent particles according to their mass, and take
all the reaction rates ki; j as equal to k, the aggregation process in (7.14) reduced to
the representation in (7.9 a). Smoluchowski [337] presented a solution of the kinetics
of this aggregation in the mean-®eld limit, with a constant matrix of reaction rates,
ki; j ˆ k. Indeed the total number of particles §i Ai decays as 1=t2, in agreement with
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(7.11). This is in contrast with the result of the di� usion-limited case of (7.12) that

§i Ai ¹ 1=td=2. The e� ect of di� usion is also apparent in the decay of monomers A1.
While in the mean-®eld limit the number of monomers decays as 1=t2, it can be
shown that in the di� usion-limited case it decays as 1=t3=2 (in d ˆ 1).

7.3. Two-species annihilation and the e� ect of spatial ¯uctuations in concentration
Another process of interest and wide applicability is that in which particles of

two di� erent species A and B combine and annihilate, or form a third inert species
[128, 331]. This two-species annihilation process is symbolically represented by

A ‡ B !k inert: …7:15†

In the mean-®eld approximation the kinetics is described by the rate equations

_ccA…t† ˆ _ccB…t† ˆ ¡kcA…t†cB…t†: …7:16†
The conservation law

cA…t† ¡ cB…t† ˆ constant ² ¢ …7:17†

derived from these equations re¯ects the fact that with each reaction that takes place
the di� erence in the number of A-particles and B-particles remains unchanged.
Equation (7.16) is readily solved with the aid of (7.17):

cA…t† ˆ ¢ 1 ¡ cA…0†
cB…0†

exp …¡¢kT†
µ ¶¡1

: …7:18†

In the special case of equal initial concentrations, cA…0† ˆ cB…0†, the exponential
decay (of the minority species) is replaced by an algebraic decay

cA…t† ˆ kT ‡ 1

cA…0†

³ ´¡1

: …7:19†

This special case of symmetry has attracted much interest.
In considering the non-classical behaviour of the di� usion-controlled two-species

annihilation process, spatial ¯uctuations in the concentration of the reactants must
be taken into account [333]. Consider the case of equal initial concentrations,
cA…0† ˆ cB…0† ˆ c…0†. In a domain of linear size L there are initially of the order
of c…0†Ld § ‰c…0†Ld Š1=2 A-particles (and likewise for B-particles). The ¯uctuations in
the number of particles are due to the totally random distribution of the reactants
assumed in the initial state. After a time t ¹ L2 the particles in the domain have had
the chance to interact and annihilate in pairs, leaving a residue of particles of that
species that was initially in the majority (owing to ¯uctuations in concentration).
Thus the number of particles left is of order ‰c…0†Ld Š1=2. Note that the conservation
law cA…t† ¡ cB…t† ˆ const is implicitly used in this argumentation. One is allowed to
use this conservation law because it is generally valid, by virtue of the pairwise
annihilation, and not restricted to the mean-®eld case. The concentration then
decays as

c…t† ¹ ‰c…0†Ld Š1=2

Ld
¹ c…0†t¡d=4; d 4 dc ˆ 4: …7:20†

The formation of domains, owing to the spatial ¯uctuations in concentration, is
essential to the result in (7.20). The reaction is largely inhibited because of these
domains, as it takes place only along the boundaries between domains. Figure 42
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shows the formation of domains as seen in computer simulations of the two-species
annihilation process in d ˆ 2.

The decay law given in (7.20) is valid for d 4 4, and dc ˆ 4 is the upper critical
dimension above which the mean-®eld result holds. One way of understanding why
the approach leading to (7.20) fails for d > 4 is the following. Since for d > 2 the
random-walk trail performed by a particle is no longer recurrent, the probability that
a particle interacts with a single particle enclosed in a volume Ld scales like Ld¡2.
Assuming that domains develop, because of the spatial ¯uctuations in concentration,
we should expect to have of the order of Ld=2 particles in a domain of linear size L
belonging to the species that is (locally) in the majority. Then, a particle of the
opposite species has a probability L2¡d £ Ld=2 of interacting and annihilating upon
crossing the domain. For d > 4 this probability scales to zero. Thus for d > 4 a
domain of particles of one species will be `transparent ’ to the opposite species, and
the formation of domains is impossible, invalidating the approach that led to (7.20).

The striking di� erences between the anomalous kinetics of the one- and two-
species annihilation processes have led K. Kang to propose the n-species annihilation
model, which is a reaction model that interpolates smoothly between these two
important cases. The system consists of n di� erent species A1; A2; . . . ; An that
interact in pairs, annihilating or combining to form some other, inert, species:

Ai ‡ Aj !k inert; i 6ˆ j: …7:21†

For n ˆ 2 the problem reduces to that of the two-species annihilation process. For
n ! 1 the constraint that a particle does not interact with its own species becomes
negligible, and the process converges to the one-species annihilation case. Thus on
increasing n from 2 to 1 one gets a series of systems that interpolates between two-
and one-species annihilation processes.

S. Havlin and D. Ben-Avraham264

Figure 42. Particle and antiparticle (A and B) positions at t ˆ 1000 on a d ˆ 2, 500 £ 500
square system. The initial condition was a uniform distribution with concentration
c ˆ 0:05. (After Toussaint and Wilczek [128].)
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The kinetics of this problem in the mean-®eld limit as well as in the di� usion-
controlled cases was studied by Ben-Avraham and Redner [338]. For the mean-®eld
limit with equal initial concentrations the decay goes like 1=t. In the di� usion-
controlled case they found that ¯uctuations arising from the discrete nature of the
reactants must be taken into account. This is in addition to the spatial ¯uctuations in
concentration and the scaling due to di� usion, which also have an e� ect. Their result
is that the concentration decays as

c…t† ¹ c…0†1=‰2…n¡1†Št¡…d=2†‰1¡1=2…n¡1†Š; …7:22†

with an upper critical dimension dc ˆ 2 ‡ 2=…2n ¡ 3†. This result indeed interpolates
between the expressions given in (7.12) and (7.20) for the one- and two-species
annihilation.

8. Further cases of di� usion
8.1. Di� usion of particles with hard-core interactions

It has been realized from experiments by Laibowitz and Gefen [311], that the
transport properties of real materials with a fractal structure cannot be explained
simply in terms of random-walk models where the walkers do not interact with each
other. Most interaction schemes are di� cult to investigate [339], and research has
focused [340±347] on the case of di� using particles with a repulsive hard-core
interaction.

Di� usion of particles with hard-core interactions in Euclidean space has been
studied by several authors [340±347]. While for d > 1 di� usion is still normal even in
the hard-core interaction case, di� usion is anomalous in d ˆ 1. The di� usion of a
labelled or tagged particle (tracer di� usion) is greatly inhibited by its repulsing
neighbours. The mean displacement of a tagged particle follows the asymptotic law

hr2i ˆ 2

p1=2

1 ¡ c

c
t1=2 as t ! 1; …8:1†

meaning that di� usion of a tracer particle is anomalous with dw ˆ 4. For small times
t the tagged particle does not `see’ its neighbours, and its di� usion is normal:

hr2i ˆ 2…1 ¡ c†t for small t: …8:2†

The anomalous di� usion of a tagged particle in d ˆ 1 has consequences for the
problem of trapping of tagged particles on the line in the presence of another type of
particle which cannot be trapped. Bunde et al. [348] studied the limit of a single trap
as well as the case of a ®nite concentration [349] of traps. For the single-trap limit
they found that the trapping rate scales as t¡1=2 for the short times and as t¡3=4 in the
asymptotic large-time limit. This is in accordance with (8.1) and (8.2), since the
trapping rate is proportional to the time derivative of 1=hr2…t†i1=2. For the case of a
®nite concentration of traps the stretched exponential decay law of the survival
probability discussed in section 7.1 changes to

S…t† ¹ exp ‰¡p4=5…1 ¡ c†2=5t1=5Š: …8:3†

Here p is the concentration of traps and c is the concentration of the particles. The
slower decay of S…t†, as compared with (7.1), is due to the slower anomalous
di� usion motion of a tagged particle, (8.1).
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The study of di� usion of particles with hard-core interactions has been extended
from Euclidean spaces to DLA (in d ˆ 2) [350] and to percolation clusters in d ˆ 2
and d ˆ 3 (see reference [351], and C. Amitrano, A. Bunde and H. E. Stanley, 1986,
unpublished). Amitrano et al. [350] found that in DLA the long-time behaviour can
be described by

hr2i ¹ ‰…1 ¡ c† fT…c†tŠ2=dw : …8:4†

Here fT…c† is a function that describes correlations of consecutive jumps of the tracer
particles and generalizes the Euclidean results, see, for example, [340] for two- and
three-dimensional lattices. For c close to 1, fT…c† º 1 ¡ c. The anomalous-di � usion
exponent dw in (8.4) is the same as for the non-interacting case, i.e. hard-core
interactions do not change the fractal dimensionality of the walks in DLA. This
holds true for all concentrations c. However, for concentrations close to c ˆ 1

hr2i ˆ g
t

tx

³ ´
; tx ˆ c2

…1 ¡ c†2
; …8:5†

where

g…x† ¹ x1=2 …x ½ 1†;
x2=dw …x ¾ 1†:

(
…8:6†

Amitrano et al. [340] explained this result by the fact that for short times the tagged
particle sees a ®nite quasi-one-dimensiona l section of the DLA, therefore repro-
ducing the one-dimensional law (8.1). In the asymptotic large-time limit the particle
senses the fractal structure of the substrate and the limit (8.4) is recovered. Similar
results have been reported for percolation clusters (see reference [351] and C.
Amitrano, A. Bunde and H. E. Stanley, 1986, unpublished). The e� ect of a uniform
bias ®eld on di� using particles with hard-core interactions has been studied in d ˆ 1
dimensions by R. Kutner and H. van Beijeren (preprint, 1987) and for random
networks by R. Ramaswamy and M. Barma (preprint, 1987).
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Figure 43. Deterministic tree: (a) generation law; (b) the tree shown to four generations.
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8.2. Di� usion on deterministic fractals

The subject of transport of loopless, ®nitely rami®ed, statistical fractals has been

reviewed in section 4. The main results are that the anomalous-di � usion exponent is

d l
w ˆ dl ‡ 1, (4.5), and that the probability distribution of being at a chemical shell l

at time t is P…l; t† ˆ At¡ds=2 exp ‰¡a…l=t1=d l
w †¾Š, with ¾ ˆ d l

w…d l
w ¡ 1†, (4.20). We now

present two examples of loopless, ®nitely rami®ed, deterministic fractals, and show

that the above results are valid.

These two examples are shown in ®gures 43 and 44. It is evident from the ®gures

that for both fractals df ˆ dl, and ~̧̧ ˆ 1. This feature is not general to deterministic

loopless fractals. From the de®nition of df it follows that the fractal dimension of

the tree in ®gure 43 is df ˆ ln 3= ln 2, and that of the tree in ®gure 44 is

df ˆ ln 4= ln 2 ˆ 2.

Owing to the exact self-similarity of these fractals, one can rigorously prove [274]

that d l
w ˆ dl ‡ 1. This is also con®rmed by an exact enumeration of the walks on the

trees. Results are shown in ®gure 45. The exact enumeration provides us with results

for P…l; t†. The structure of P…l; t† for the tree of ®gure 43 is shown in ®gure 46. The

envelope of P…l; t† scales exactly as proposed in (4.20). Results for both fractal trees

are presented in ®gure 47.

Transport properties on deterministic in®nitely rami®ed fractals are harder to

analyse, and there are no exact results for this problem. Ben-Avraham and Havlin

[53] have derived rigorous bounds for the transport exponents of a family of exact

fractal lattices with an in®nite rami®cation. The fractal lattices belonging to this

family are characterized by two parameters, b and x. The generator or genus of each

lattice is obtained from a d-dimensional hypercube subdivided to bd smaller

hypercubes. The parameter x …0 4 x 4 1† is a measure of the number of hypercubes

that actually belong to the generator (the bd hypercubes are diluted). For example,

in d ˆ 2 the genus consists of b2 squares diluted so that there are b…1 ¡ x† rows of
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Figure 44. Deterministic tree: (a) generation law; (b) the tree shown to four generations.
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S. Havlin and D. Ben-Avraham268

Figure 45. Plot of hl2i as a function of t for di� usion on the fractals of ®gures 43 (^), and
44 (^). The dots represent the data from exact enumeration, and the solid curves
were traced according to d l

w ˆ dl ‡ 1.

Figure 46. The probability distribution, P…l; t†, for di� usion on the fractal of ®gure 43. The
envelope points are marked by the arrows.
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b connected squares, and the remaining bx rows contain b…1 ¡ x† squares each
(®gure 48).

The fractal dimension of a two-dimensional lattice{ with the parameters b and x is

df ˆ 2 ‡ ln…1 ¡ x2†
ln b

: …8:7†

For the resistance exponent ~±± the rigorous bounds

Di� usion in disordered media 269

Figure 47. Scaling of P…l; t† for the deterministic fractals of ®gures (a) 43 (b) and (b) 44 (b).
The linear shape of the resulting curves con®rms (4.20).

{ Results have also been derived [53] for d-dimensions.
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ln
1 ¡ x ‡ x2

1 ¡ x

³ ´¿
ln b 4 ~±± 4 ln

1

1 ¡ x

³ ´¿
ln b …8:8†

are derived. From the Einstein relation dw ˆ df ‡ ~±± bounds of dw follow:

2 ‡ ln ‰…1 ‡ x†…1 ¡ x ‡ x2†Š
ln b

4 dw 4 2 ‡ ln …1 ‡ x†
ln b

: …8:9†

The above bounds become narrower and coincide when x ! 0 or b ! 1. Numerical
simulations for di� usion on fractal lattices belonging to the family of ®gure 48 have
been performed by Movshovitz [352] and by J. Given (private communication).
Their results are consistent with the bounds of (8.9).

8.3. Self-avoiding walks on fractals
A problem that is closely related to the problem of di� usion (random walks) in

disordered media is that of self-avoiding walks (SAW) [353±360, 400] on fractals.
The interest in this problem stems from its analogy with the n ˆ 0 vector model
[10, 361]. The con®gurational properties of SAWs in disordered media are largely
in¯uenced by the geometrical properties of the backbone of the substrate. Because of
the excluded-volume interaction on SAWs, a walk cannot exit from a dangling end
once it has previously entered it. Thus the SAW lies mainly on the backbone. This is
in contrast with random walks, which explore all parts of the substrate.

The end-to-end exponent ¸ for SAWs is de®ned [362] by

hR2
Ni ¹ N2¸ ; …8:10†

where hR2
Ni is the mean-square end-to-end distance of a SAW consisting of N steps.

The value of ¸ for Euclidean lattices is very successfully predicted by the mean-®eld
Flory theory [10, 363]
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Figure 48. (a) Genus of a two-dimensional fractal lattice with b ˆ 5 and x ˆ 3
5. (b) The

lattice is shown to two generations.
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¸F ˆ 3=…d ‡ 2†; d 4 dc ˆ 4; …8:11†

where the subscript F stands for Flory. Equation (8.11) agrees with the known exact
results in d ˆ 1, 2 [364] and d ˆ dc ˆ 4. The question as to whether the Flory
prediction is exact for d ˆ 3 is still open. The validity of the Flory approach can be
tested for SAWs on ®nitely rami®ed exact fractal lattices. The end-to-end exponent ¸
can be obtained exactly using a renormalization-group procedure, and compared
with the prediction from a Flory theory.

The exact real-space renormalization-group (RSRG) technique for SAWs on the
Sierpinski gasket [354, 358±360] consists in a decimation procedure on the points 1, 2
and 3 of ®gure 49 (a). Let · 0

1 be the fugacity associated with a SAW lying between the
vertices A and B and that does not touch C (®gure 49 (b)) and let · 0

2 be the fugacity
associated with a SAW lying from A to B and passing through C (®gure 49 (c)).
These rescaled fugacities · 0

1 and · 0
2 can be obtained from the decimation of the inner

vertices of the gasket (vertices 1, 2 and 3 in ®gure 49 (a)) and represented in terms of

·1 and ·2, the analogous fugacities for a SAW in the gasket before rescaling.
Figures 49 (b, c) show the di� erent con®gurations contributing to · 0

1 and · 0
2:

· 0
1 ˆ ·2

1 ‡ ·3
1 ‡ 2·1·2 ‡ ·2

1 ‡ 2·2
1·2;

· 0
2 ˆ ·2

1·2 ‡ 2·1; ·2
2:

)
…8:12†

The only non-trivial point is

·¤
2 ˆ 0; ·¤

1 ˆ
p

5 ¡ 1p
2

: …8:13†

The eigenvalues around the ®xed point are

¶1 ˆ ·¤2
1 < 1; ¶2 ˆ 2·¤2

1 ‡ 3·¤2
1 > 2: …8:14†

A study of the ¯ow in the …·1; ·2† plane performed by Rammal et al. [354] yielded

¸ ˆ
ln 2

ln…2·¤2
1 ‡ 3·¤2

1 †
º 0:798: …8:15†
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Figure 49. (a) Sierpinski gasket. (b) and (c) Coarse graining of SAWs on the gasket.
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This result has also been dervied by Klein and Seitz [359]. A similar approach can be

applied to the three-dimensional Sierpinski gasket, yielding ¸ ˆ 0:729 [354].
Rammal, Toulouse and Vannimenus [354] presented a Flory theory for SAWs on

fractals that yielded

¸F ˆ 1

dBB
f

3dBB
s

dBB
s ‡ 2

: …8:16†

The exponents dBB
f and dBB

s are respectively the fractal and fracton dimensions of the

backbone. The presence of the backbone exponents in (8.16) re¯ects the fact that a
SAW on a percolation cluster explores only the backbone of the cluster.

Since the Sierpinski gasket has no dangling ends, dBB
f ˆ df ˆ ln …d ‡ 1†= ln 2, and

dBB
s ˆ 2 ln …d ‡ 1†= ln …d ‡ 3†. Substituting in (8.16) the exact numerical values for

dBB
f and dBB

s yields ¸F ˆ 0:768 for d ˆ 2 and ¸F ˆ 0:654 for d ˆ 3. These results
disagree with the exact numerical values of ¸…d ˆ 2† ˆ 0:798 and ¸…d ˆ 3† ˆ 0:729

obtained from renormalization-group theory. This supports the argument that a
Flory theory is not exact for SAWs in every dimension.

The question of SAWs on percolation clusters is of interest, and is rather
controversial [353, 355±359]. Kremer [353] reports that numerical simulations of

SAWs on the in®nite percolation cluster for p > pc indicate that the end-to-end
exponent ¸ is the same as for Euclidean lattices. For p ˆ pc the value of ¸ changes.

Harris [355] argues that for averages over all clusters the value of ¸ is the same as for
Euclidean space, even in the case p ˆ pc. Derrida [357], on the other hand, claims

that ¸ is modi®ed even by the presence of weak disorder, and that its value is
di� erent from normal space for all p:

The Flory theory, (8.16), has the following interpretation for SAWs on
percolation clusters. For p ˆ pc the critical exponents dBB

s and dBB
f , describe the

incipient in®nite percolation cluster. For p > pc, dBB
s and dBB

f characterize the
incipient in®nite percolation clusters for length scales L smaller than the correlation

length ¹. When L ¾ ¹ the cluster is homogeneous, and is characterized by the normal
Euclidean exponents dBB

s ˆ dBB
f ˆ d , and (8.26) reduces to (8.11). Thus the Flory

theory agrees with Kremer [353] that SAWs have the same end-to-end exponent in

percolation when p > pc (for L ¾ ¹) as for Euclidean lattices. The numerical values

of ¸F arising from (8.16) for SAWs on percolation clusters are presented in table 8.
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Table 8. Exponents characterizing SAWs on percolation clusters at criticality used in the text.

¸
¸l ¸F (regular

d ~̧̧ (8.31) ¸ ˆ ¸l ~̧̧ (8.26) lattices

0.77
2 0.88 0.864

0.767a 0.69 0.75

0.67
3 0.75 0.89

0.65 [353]
0.57 0.6

4 0.64 0.936 0.59 0.49 0.5

6 1
2 1 1

2
1
2 0.5

a For large-cell RSRG results [401].
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In deriving (8.16), an assumption has been made that the distribution probability
of random walks on a disordered medium scales like P…r; t† ¹ exp …¡rdw =t†. How-
ever, from the discussion in section 3.5, it is plausible that P…r; t† ¹ exp ‰…r=t1=dw †uŠ,
where u is not necessarily equal to dw. Moreover, the Flory arguments can be
carried out either in normal Pythagorean space or in chemical space. In the
latter case one uses P…l; t† ¹ exp ‰¡…l=t1=d l

w †¾Š for the density distribution. In the
following the chemical space is used, since the Flory results in this case are in
agreement with the limiting exact results of percolation in d ˆ 1 and in d ˆ 6. The
Flory approximation, using normal Pythagorean space, fails in these cases. The
Flory expression for the free energy of a SAW is (dropping all unimportant
prefactors)

F º N2

ldl
‡ l

N1=dl
w

³ ´¾

: …8:17†

Here dl and d l
w are critical exponents describing the backbone and the di� usion on it

in the chemical space respectively. De®ne and end-to-end exponent ¸1 for a SAW in
chemical space by

l ¹ N¸l : …8:18†

Since R ¹ l ~̧̧ (section 3.4), one obtains R ¹ N ~̧̧¸l ˆ N¸, and it follows that

¸ ˆ ~̧̧¸l: …8:19†

Note that, since the SAW is a subset of the backbone, ¸ 5 1=df . On the other hand,

¸l 4 1; thus

1

df

ˆ ~̧̧

dl
4 ¸ ˆ ¸l ~̧̧4 ~̧̧: …8:20†

Minimizing the free energy F (8.27) yields the Flory-type result

¸l ˆ 2 ‡ ¾=d l
w

¾ ‡ dl
: …8:21†

Table 8 shows the numerical values of ¸l and ¸ obtained from (8.19) and (8.21),
using the estimated values of ¾, d l

w and dl for percolation clusters (section 3.6). Note
that the numerical values of ¸ from (8.19) are larger than the corresponding end-to-
end exponents of SAWs on regular lattices. In contrast, ¸F from (8.16) gives smaller
values than in regular space.

As for the question of the validity of the Flory approach for the evaluation of ¸,
the results are inconclusive. For the Sierpinski gasket, ¸ for SAWs in d ˆ 2 and
d ˆ 3 is known exactly, and so are the exponents dl and d l

w. However, the value of ¾
is unknown in both cases (apart from simulations). Assuming that the Flory result of
(8.21) holds, we get ¾ ˆ 1:995 for the Sierpinski gasket in d ˆ 2, and ¾ ˆ 1:584
for the gasket in d ˆ 3. These values are in general agreement with numerical
simulations [113, 114] and with ¾ ˆ dw=…dw ¡ 1† of section 2.4. An exact solution for
the exponent ¾ will provide us with the answer to the question as to whether the
Flory result is exact or not on the Sierpinski gasket, thus shedding light on the more
fundamental question of the validity of the Flory approach for regular d ˆ 3 space.
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8.4. Di� usion in other types of disordered systems
There are various cases of di� usion in other disordered systems that have not

been reviewed here. It is hardly possible to include all of the enormous amount of
examples. A short list is included in the following.

The problem of transport in a random mixture of two types of conductors has
been given much attention [365±372]. Indeed, percolation is a particular case of this
general problem, where one of the types of `conductors’ is a perfect insulator. The
system has been used as a model of ionic conductors mixed with a dispersed
insulating phase [142], and resistor±superconducting mixtures such as thin ®lms of
superconducting material deposited on a normal substrate [373]. Di� usion on
kinetic-gelation [374, 375] clusters has been studied experimentally by R. Bansil
and L. Carvalho (1987, preprint) and theoretically by N. Bahadur, H. J. Herrmann
and D. P. Landau (preprint, 1987). They have found that di� usion is anomalous and
that the value of dw cannot be distinguished from that of di� usion in three-
dimensional percolation clusters at criticality. Di� usion on percolation clusters in
the presence of random ®elds was studied numerically by Pandey [377]. Anomalous
di� usion in any dimension in the presence of long-range correlated random forces
was found by J. P. Bouchaud, A. Comtet, A. Georges and P. Le Doussal (preprint,
1987).

The theory of anomalous di� usion in disordered systems has been employed in
the study of the substrates generated by simple random walks (see references [85,
213, 376] and D. Movshovitz and S. Havlin, preprint, 1987), in the study of polymers
using the self-avoiding-walk model [67, 378±381], and in the derivation of some novel
features of the overlapping Lorentz gas [382].

Anomalous di� usion has also been studied for dynamically disordered systems
(A. Nitzan, S. D. Druger and M. A. Ratner, 1987, preprint) and in stirred
percolation [383, 384]. The problem is relevant to the electrical conductivity of
water-in-oil microemulsions [385]. Di� usion on directed percolation [386] has been
considered by Vicsek et al. [387] and by Stephen [388]. Other substrates in which
anomalous di� usion has been studied are hierarchical lattices [389], multifractals (H.
Weissmann and S. Havlin, 1987, preprint, P. Meakin, 1987, preprint) and di� usion
near absorbing fractals (M. E. Cates and T. A. Witten, 1987, preprint). An exact
solution to the problem of di� usion on a quasi-periodic chain has been provided by
Khanta and Stinchcombe [390] using a decimation method involving scaling by an
irrational length factor. This provides some understanding of the problem of
transport in quasicrystals [391].

Charge transport in amorphous semiconductors also involves in many cases
amorphous di� usion and/or percolation, and has been very extensively studied and
reviewed [108, 286, 287, 392±396] in connection with the electrical conductivity and
photoconductivity of these materials. The basic quantity from which these properties
can be derived is the con®gurational average of the probability density P…r; t†,
introduced in section 2.4, that a particle will be found distance r from its starting
point after time t. Two extreme types of problems have been treated in detail. One of
these is where the charge carriers move through the system in extended states, i.e. as
free particles, subject to trapping in, and release from, a set of potential wells of
random depth (see section 5.3) [397]. It has been shown that this problem can be
treated exactly by the use of a distinction of waiting times and the continuous-time
random-walk method. The other problem is that known as r-percolation [392], in
which the charge carriers move between states of the same energy localized at sites
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distributed randomly through the medium, with the transition rate between any two
sites depending only on the distance R between them, and usually decaying
exponentially with R. A much more realistic but di� cult problem is that in which
the carriers move between localized states of di� erent energy, with the transition rate
depending on the energy di� erence as well as on the distance between the sites, so
that it is no longer symmetrical for transitions in the two directions. For this sort of
problem, there is no obvious way of de®ning critical exponents or fractal dimensions.
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Appendix: Numerical methods
The study of di� usion on random media has lead to the development of various

sophisticated numerical methods: Monte Carlo procedures and exact enumerica-
tions. Frequently, the numerical work is double, requiring simulations of the
substrate, as well as of the di� usion process. Also, the di� usion process can be
realized by di� erent kinds of random walkers or `ants’ [398]. These di� erent kinds of
walkers arose partly because of numerical convenience and partly in order to model
speci®c physical situations as, for example, `termites’ in the study of superconducting
clusters [367, 370].

A.1. Monte Carlo methods
A straightforward numerical approach to the problem of di� usion on random

media requires a double Monte Carlo procedure: one for simulating the substrate,
the other for the simulation of di� usion itself. The methods for the simulation of the
substrate depend, of course, on the substrate itself. For percolating clusters the well
known cluster-growth method [175, 184] and the Hoshen±Kopelman algorithm [399]
are most useful. To these, one can add the very recent methods of cluster burning
[179] for the generation of the backbones of percolation clusters. Monte Carlo
procedures for the simulation of DLA clusters [63, 228] are also continuously
improving. With the modern sophisticated algorithms exploiting the equivalence
of DLAs to electrostatics [119], giant clusters of millions of sites are currently
generated. These are just a few examples. Di� usion itself is simulated by a random
walker. Di� erent weights can be assigned for a step to the unblocked directions,
giving rise to several types of walkers, `ants’ or `termites’, some of which are reviewed
in section A.3.

Some numerical techniques avoid, or reduce to some extent, the number of
Monte Carlo steps required because of the double simulation procedure. As an
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example, we consider the problem of di� usion on percolation clusters at criticality.

Two kinds of ensemble must be taken into account (see section 3.2): the ensemble of

all possible clusters, and the ensemble of the largest clusters, i.e. of only those clusters

whose span is much larger than the di� usion span. For the case of all clusters, an

elegant method reducing the amount of Monte Carlo work has been proposed [47].

In this method the percolation clusters and the di� using random walker are

generated by the same procedure. Each simulation consists of a random walker

starting at an origin assumed to belong to the cluster. Then the nearest neighbours

(NN) of the origin are chosen to be occupied or empty with probability p or 1 ¡ p

respectively ( p is the probability in the percolation problem), just as in the cluster-

growth method. The ant di� uses randomly to one of the occupied NN sites. This

di� usion step may be carried out according to any speci®c algorithm, for example

the myopic- or the blind-ant algorithm [388]. Now, the occupation of each of the

NN of the latter site (to which the walker has di� used) is determined, as usual,

unless, of course, its occupation has been previously determined in an earlier stage.

The procedure is continued in this fashion up to the desired number of steps. The

advantage of the method is that one constructs and stores only those parts of

the cluster which are in the immediate neighbourhood of the walk (®gure 50). Its

major disadvantage is that each cluster is used for only one random walk, while

overall it might be worthwhile to have several random walkers per cluster.

Another consideration that reduces the amount of numerical work for either kind

of ensemble is the following. If the quantity of interest is not dw but rather ~±±, the

resistance exponent of the clusters, then the fact that ~±± for the whole clusters is equal

to ~±± for the backbone [82, 102] can be used. One can simulate di� usion on the

backbone alone [82], and use (2.7) to derive ~±± ˆ dBB
w ¡ dBB

f , where the superscript BB

stands for backbone. Since dBB
f < df , di� usion is performed on a much smaller

substrate. On the other hand, since ~±± is ®xed, dBB
w < dw as well. This implies that

fewer random walk steps are required for a given end-to-end length of the walk. For

these two reasons (the sparsity of the backbone compared with the whole cluster,

and the shorter walks required) the amount of work is greatly reduced, leading to
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Figure 50. Schematic representation of the MC procedure for simulation of percolation and
di� usion together. The shaded region represents parts of the cluster on which
di� usion passes, while the dotted areas belong to the cluster but are not constructed
by the MC procedure.
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more reliable values for ~±± [82]. The only drawback of this method is the need for an
ensemble of backbones, which is harder to simulate than the whole clusters. We hope
that the recent algorithms of burning [179] for obtaining the backbones will increase
the use of backbones for improving our estimates of ~±±.

A.2. Exact enumeration
This powerful technique was ®rst used by Ben-Avraham and Havlin [47] in the

early studies of anomalous di� usion on fractals and on percolation clusters, and has
been reviewed by Majid et al. [83]. The method eliminates the need for a Monte
Carlo simulation for the process of di� usion. Thus a Monte Carlo procedure is used
at most once for generating the substrate, and all possible random walks starting
from a given origin on this substrate are averaged. The exact enumeration of random
walks greatly reduces the error bars, compared with Monte Carlo simulations using
about the same amount of computer time (®gure 51).

The key to the exact-enumeration procedure is that the probability of a random
walker being at any site i at some time t (one can speak of time, t or the tth step, as
convenient) is determined solely by the probabilities of being at the nearest
neighbours of site i at time t ¡ 1. The algorithm is as follows. We ®rst store the
medium on which di� usion is to take place in a matrix, keeping track of the nearest
neighbours of each site. To calculate the di� usion, we have two matrices, M1f jgt and
M2f j gt 0 , which store the probability distribution function P…r; t† of the random
walker at times t and t 0, where f jg represents the set of all sites in the medium. Thus,
given the distribution function M1f jgt at time t, the distribution function at time
t ‡ 1 is given by

M2f jgt‡1 ˆ
X

nn f jg
M1‰nn f jgŠtW ‰nn f jg; jŠ: …A 1†

Here nn f jg denotes the nearest neighbours of f jg, and W ‰nn f jg; jŠ is the
probability of the walker to step from nn f jg to j. The W ‰nn f jg; jŠ depend on the
kind of walker (ant) in use. Having obtained M2f jgt‡1, one can go back and
calculate the distribution function at a time t ‡ 2 by

M1f jgt‡2 ˆ
X

nnf jg
M2‰nn f jgŠt‡1W ‰nn f jg; jŠ: …A 2†

Di� usion in disordered media 277

Figure 51. Graph of dw against N, comparing MC data …~; &† with exact-enumeration
data (*). The MC data is the same as that of ®gure 18.
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In this fashion the probability distribution density P…rj; t† ¹ Mf jgt is obtained (rj is
the spatial coordinate of site j). Once P…r; t† is known, various spatial averages can
be calculated (see section 2.4). The exact-enumeration procedure may easily be
continued up to the time and memory limitations of the computer. The computation
time increases linearly with the number of sites in the medium times the number of
steps to which di� usion is performed.

Finally, we note that the exact-enumeration method can be applied to a wide
range of problems involving di� usion. For example, the survival probability …r; t†
for a di� using particle in a random medium with traps can easily be obtained by a
suitable choice of W ‰nn f jg; jŠ at the trapping sites j. Indeed, the method of exact
enumeration has been pro®tably used in a wide variety of di� usion problems:
di� usion on exact fractals; moments and scaling of probability densities [85];
di� usion on percolation at criticality for d ˆ 2 [83]; di� usion on percolation
backbones [82]; di� usion on DLAs [221]; di� usion on clusters generated by random
walks [85, 404]; and trapping of particles in d ˆ 1 [325] and d ˆ 2 and 3 [130];
generating DLA aggregates (S. Havlin and B. L. Trus, preprint, 1987).

A.3. The `blind ant’ and the `myopic ant’
In the early stages of research on di� usion on percolation clusters de Gennes

coined the suggestive name of `the ant in the labyrinth’. Since then a distinction has
appeared between di� erent kinds of ants (see references [83, 398] and A. B. Harris,
Y. Meir and A. Aharony, preprint, 1987), which is equivalent to di� erent kinds
of walkers having characteristic individual di� usion probabilities W ‰nn f jg; jŠ from
site to site.

The blind ant does not necessarily move, but can wait at its present position with
a probability equal to the number of blocked pathways divided by the coordination
number of the lattice. The mypic ant, on the other hand, must move at every time
step. It moves to one of the open paths lying ahead with equal probabilities for each
direction. The two ants are obviously di� erent, although computer simulations show
that their walks converge to yield the same anomalous-di � usion exponents on
fractals [83]. The blind ant converges more rapidly to the asymptotic regime [83,
398], possibly because of a lower probability of entering dead ends. On the other

S. Havlin and D. Ben-Avraham278

Figure 52. Time evolution of the probability distribution function for three successive
instants of time for the cases of (a) the myopic ant, (b) the blind ant and (c) the
trapped ant with a mass-conserving normalization, and with no mass conservation
(the case of trapping). Probabilities for the case of trapping are given in parentheses.
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hand, for some random media lacking a well-de®ned coordination number z (for
example trees with unrestricted random branching or continuum percolation of
rods) the blind-ant algorithm cannot possibly be de®ned, and the myopic ant is most
useful in such cases.

Many other algorithms are possible, some of which have important physical
interpretations. For example, suppose that one enumerates the di� erent number of
ways to get to any point of the substrate in t steps, starting from the origin. Dividing
by the total number of possible walks, we get a third kind of ant, di� erent from the
blind and the myopic ants. However, note that we could also choose to normalize,
dividing by zt (the total number of random walks that are possible on the underlying
lattice). A moment’s re¯ection shows that the result is the probability …r; t† of
®nding a random walker at r at time t when the blocked sites act as perfect traps.
Thus, even with the mass-conserving normalization, this third kind of ant gives a
distribution that is proportional to …r; t†.

To illustrate the di� erent ant algorithms, we present in ®gure 52 the time
evolution of the probability density for a myopic ant, a blind ant, and the third
kind of antÐthe trapped andÐwhich has been suggested as an example.

Notes added in proof
After this review was completed we learned about additional relevant work. We

list in the following the references together with the section to which they should be
added.

Add to section 1, references [42] and [43]:
Numerical simulations of random walks on percolation systems are presented

also in the earlier work by Hoshen and Kopelman [402].

Add to section 2:
Moments of the number of distinct sites visited by a random walker on a fractal

have been studied by P. Argyrakis, L. W. Anacker and R. Kopelman (preprint,
1987).

Add to reference [137], section 2.4:
The energy spectrum of the Sierpinski gasket in a magnetic ®eld has been studied

by Banavar et al. [403].

Add to section 3:
Long-range random walk on percolation clusters was studied by Argyrakis and

Kopelman [404]. The fractal behaviour of correlated random walks on percolation
clusters was studied by Argyrakis and Kopelman [405]. The response function for
random walks on the bond disordered lattice close to the percolation threshold is
calculated in the e� ective medium approximation by M. E. Ernst, G. A. van Velzen
and J. W. Dufty (preprint, 1987).

Add to section 3.4:
Recent numerical evaluations of the chemical distance exponents ~gg, ~̧̧ and ~̄̄ by

A. U. Neumann and S. Havlin (preprint, 1987) yield ~gg ˆ 3:3 § 0:1, ~̧̧ ˆ 0:88 § 0:01
and ~̄̄ˆ 9:8 § 0:2 for d ˆ 2 and ~gg ˆ 4:0 § 0:1, ~̧̧ ˆ 0:70 § 0:01 and ~̄̄ˆ 4:2 § 0:1 for
d ˆ 3 percolation clusters. Note that these results in particular in d ˆ 3 are not
consistent with the relation ~̄̄ˆ …1 ¡ ~̧̧†¡1 suggested in reference [109]. This raises a
question about the validity of this relation for structures for which loops cannot be
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neglected. Manna and Chakrabarti [406] use the concept of chemical distance
(minimum path) to study the dielectric breakdown in the presence of random
conductors.

Add to section 3.5:
The form of P…r; t† for di� usion on fractals was found recently to be relevant for

localization on fractals. Levy and Souillard [407] argued that the impurity quantum
states on fractals are superlocalized. The wavefunction decays as jÁ…r†j ¹ exp …¡r®†,
® > 1. They ®nd a relation between ® and the exponent u in P…r; t†, (2.21),

® ˆ udw…dw ‡ u†. Assuming u ˆ dw as suggested in [113, 114] they obtained

® ˆ …dw=2† > 1, i.e., superlocalization of the wave function. See also [408]. However,
when using in the above formula for a the result u ˆ …1 ¡ 1=dw†¡1 suggested in [115]
and [116] one obtains ® ˆ 1 and the wavefunction is not superlocalized. A. B. Harris
and A. Aharony (preprint, 1987) prove that for averaging over all possible
con®gurations, jÁ…r†j ¹ exp …¡r†, i.e. a ˆ 1. From this and from the relation

® ˆ udw=…dw ‡ u† they argue that u ˆ …1 ¡ 1=dw†¡1 for all fractals. See also related
results obtained by F. Delyon, G. Deutscher, Y. E. Levy and B. Souillard (preprint,
1987).

The multifractal nature of random resistor networks was also studied by
Fourcade and Tremblay [409] and by Platt and Family [410]. The voltage anomalies
in random resistor networks were studied also in [411]. An indication for multifractal

behaviour was found by Bunde et al. [412] for biased di� usion in percolation systems
at criticality.

The voltage distribution for a two-component random mixture of conductances

was studies by L. de Arcangelis and A. Coniglio (preprint, 1987). Using a scaling
theory they found that an in®nite hierarchy of exponent is needed to characterize
systems in D > 2, and only one exponent for D ˆ 2.

Add to section 3.6:
A numerical study of transport properties in two- and three-dimensional bond

percolation systems has been performed by van Velzen and Ernst [413].
Recent Monte Carlo simulations of random walks on three-dimensional percola-

tion systems were performed by R. B. Pandey, D. Stau� er and J. G. Zabolitzky
(preprint, 1987). They estimate from their data that d 0

w ’ 5:7 § 0:05 yielding that
dw ˆ 4:30 § 0:05 and ~·· ’ 2:8 § 0:3. Note that these values are appreciably larger
than the previous values given in table 3. These results deviate signi®cantly from the
Alexander±Orbach conjecture that ds ˆ 2df=dw ˆ 4=3.

Add to section 3.7:
The ®eld theory introduced by Lubensky and Tremblay [156] for continuum

percolation was re-analysed by Machta (preprint, 1987). The dynamical exponents
found agree with those found by Straley [212] and Machta et al. [414] using the
nodes±links±blobs model for the backbone of percolation.

Add to reference [235] section 4.3:
Maloy et al. [415].

Add to section 4.4:
For a discussion of the detailed form of P…r; t† in the case of CTRW in particular

about the prefactor of the exponent in (4.20) see H. Weissmann, G. H. Weiss and S.

Havlin (preprint, 1987).
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Add to section 5:
Haus and Kehr [416] studied the e� ective medium theory including weighted

initial conditions, and the relation between the continuous time random walk theory
and the averaged master equations. They found that the initial conditions are
essential for the random trap model, yielding the previous exact results [417] for
the mean square displacement, hX2i ˆ 2Dt, for all times.

Add to section 5.1:
Di� usion in systems with an arbitrary distribution of energy barriers and nearest

neighbour hopping processes was studied by W. P. Keirstead and B. A. Huberman
(preprint, 1987). Transport and spectral properties of strongly disordered chains

with a power-law distribution of transition rates was studied also by Nieuwenhuizen
and Ernst [418].

Add to section 5.4:
Simulations of random walks on percolation clusters with energetic disorder were

studied by P. Argyrakis and R. Kopelman (preprint, 1987).

Add to section 6:
Monte Carlo simulations of biased random walks on a two-dimensional

Sierpinski gasket were performed by Kim et al. [419].

Add to section 6.4:
The transport of dynamically neutral tracer ¯owing through a random network

of tubes with percolation disorder was studied by Koplik et al. [420]. Using equation
(78) of their theory [420] one obtains d1

w ˆ 2, compared to d1
w ˆ 3 obtained in (6.42)

for a tracer in ¯ow through the incipient in®nite percolation cluster generated on a

Cayley tree. More extensive theoretical and numerical work is needed to resolve this
disagreement. A network model and e� ective medium approxmation for ¯uid ¯ow in
porous media was presented recently by R. Blumenfeld and D. J. Bergman (preprint,
1987).

Add to section 7.1:
Single and multiple random walks on random lattices were studied using

excitation trapping and annihilation simulations by Kopelman et al. [421]. A scaling
theory of di� usion in the presence of large traps was developed by Lyo [422].

Correlated random walks on linear chains with random traps were studied by
J. K. Anlauf, K. W. Kehr and S. M. Reulein (preprint, 1987).

Add to section 7.2:
Supercomputer simulations of the elementary A ‡ B ! 0 di� usion-limited

reaction were performed under study source conditions on a Sierpinski lattice by

L. W. Anacker and R. Kopelman (preprint, 1987).

Add to section 8.1:
Recently a percolation model for mixed alkali e� ects in solid ionic conductors

was presented by Harder, Bunde and Dieterich [423] where the di� usion of hard core
particles in a percolation network also was considered.

The e� ect of hard core interaction on di� usion in the presence of random ®elds
and random transition rates in one-dimensional chains was studied by E. Koscienly-

Bunde, A. Bunde, S. Havlin and H. E. Stanley (preprint, 1987).
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Add to section 8.2:

The fracton dimension of a family of deterministic fractals has recently been
studied by Borgan et al. [424].

Add to section 8.3:

D. Markovic, S. Milosevic and H. E. Stanley (preprint, 1987), studied SAWs on
percolation systems. Within the framework of the position-space renormalization
group (PSRG) method they ®nd that the critical exponent ¸ of the mean end-to-end

distance of SAW on a two-dimensional random network is equal to the critical

exponent of SAW on the ordinary square lattice. An exact solution of a kinetic self-
avoiding walk on the Sierpinski gasket was presented by Bradley [425].

Add to section 8.4:

T. Odagaki (preprint, 1987) has studied the termite and ant di� usions in the
d-dimensional lattice trapping model. Dekeyser et al. [426] have studied the static

and dynamic fractal properties of random walks with intersections. The fracton
dimensionality of random superconducting±normal networks has been numerically

calculated by A. R. Day, W. Xia and M. L. Thorpe (preprint, 1987).

For the convenience of the reader we summarize in table 9 the de®nitions of the

di� erent exponents, important relations between the exponents presented in the text,

and the notation used in other publications.

S. Havlin and D. Ben-Avraham282

Table 9. Summary of de®nitions, relations between exponents presented in the text, and
notations of these exponents in other publications.

Notation in the
De®nition present review In other publications Relations

Fractal df D; ·dd [48] df ˆ d ¡  =¸

dimensions dBB
f (backbone) ·dd [47]

Topological d1 d̂d [181]
exponent

Chemical ~̧̧ 1=dmin [185] ~̧̧ ˆ d1=df

exponent Z1 [181]
Á23 [176]
¸=¸t [175]

Fracton (spectral) ds
·dd [45] ds ˆ 2df=dw

dimension ~dd

Diffusion dw 2 ‡ ³ [48] dw ˆ df ‡ ·±±
exponents D [47]

d1
w d1

w ˆ ~̧̧d!
d 0

w 1/k [81] d 0
! ˆ dw=…1 ¡  =2¸†

Conductivity ~·· ˆ ·=¸ ~tt ˆ t=¸ ~·· ˆ …d ¡ 2† ‡ ~±± [427]
exponent

Resistance ~±± ˆ ±=¸
exponent
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